Skip to content

Commit

Permalink
fix examples
Browse files Browse the repository at this point in the history
Signed-off-by: Zhiyuan Chen <[email protected]>
  • Loading branch information
ZhiyuanChen committed Jan 22, 2025
1 parent ac5c429 commit 0f86c56
Show file tree
Hide file tree
Showing 12 changed files with 129 additions and 123 deletions.
26 changes: 13 additions & 13 deletions multimolecule/models/ernierna/README.ernierna-ss.md
Original file line number Diff line number Diff line change
Expand Up @@ -25,18 +25,18 @@ widget:
- label: "."
score: 0.10200861096382141
- example_title: "microRNA-21"
text: "UAGC<mask>UAUCAGACUGAUGUUGA"
text: "UAGC<mask>UAUCAGACUGAUGUUG"
output:
- label: "U"
score: 0.20929744839668274
- label: "C"
score: 0.1741773933172226
- label: "G"
score: 0.16430608928203583
score: 0.23881851136684418
- label: "A"
score: 0.1348584145307541
- label: "."
score: 0.11933524906635284
score: 0.2219424843788147
- label: "G"
score: 0.133585587143898
- label: "C"
score: 0.11793075501918793
- label: "-"
score: 0.10667591542005539
---

# ERNIE-RNA
Expand Down Expand Up @@ -131,7 +131,7 @@ from multimolecule import RnaTokenizer, ErnieRnaModel
tokenizer = RnaTokenizer.from_pretrained("multimolecule/ernierna-ss")
model = ErnieRnaModel.from_pretrained("multimolecule/ernierna-ss")

text = "UAGCUUAUCAGACUGAUGUUGA"
text = "UAGCUUAUCAGACUGAUGUUG"
input = tokenizer(text, return_tensors="pt")

output = model(**input)
Expand All @@ -151,7 +151,7 @@ from multimolecule import RnaTokenizer, ErnieRnaForSequencePrediction
tokenizer = RnaTokenizer.from_pretrained("multimolecule/ernierna-ss")
model = ErnieRnaForSequencePrediction.from_pretrained("multimolecule/ernierna-ss")

text = "UAGCUUAUCAGACUGAUGUUGA"
text = "UAGCUUAUCAGACUGAUGUUG"
input = tokenizer(text, return_tensors="pt")
label = torch.tensor([1])

Expand All @@ -172,7 +172,7 @@ from multimolecule import RnaTokenizer, ErnieRnaForTokenPrediction
tokenizer = RnaTokenizer.from_pretrained("multimolecule/ernierna-ss")
model = ErnieRnaForTokenPrediction.from_pretrained("multimolecule/ernierna-ss")

text = "UAGCUUAUCAGACUGAUGUUGA"
text = "UAGCUUAUCAGACUGAUGUUG"
input = tokenizer(text, return_tensors="pt")
label = torch.randint(2, (len(text), ))

Expand All @@ -193,7 +193,7 @@ from multimolecule import RnaTokenizer, ErnieRnaForContactPrediction
tokenizer = RnaTokenizer.from_pretrained("multimolecule/ernierna-ss")
model = ErnieRnaForContactPrediction.from_pretrained("multimolecule/ernierna-ss")

text = "UAGCUUAUCAGACUGAUGUUGA"
text = "UAGCUUAUCAGACUGAUGUUG"
input = tokenizer(text, return_tensors="pt")
label = torch.randint(2, (len(text), len(text)))

Expand Down
26 changes: 13 additions & 13 deletions multimolecule/models/ernierna/README.md
Original file line number Diff line number Diff line change
Expand Up @@ -24,18 +24,18 @@ widget:
- label: "."
score: 0.06993662565946579
- example_title: "microRNA-21"
text: "UAGC<mask>UAUCAGACUGAUGUUGA"
text: "UAGC<mask>UAUCAGACUGAUGUUG"
output:
- label: "U"
score: 0.22777850925922394
- label: "A"
score: 0.21105751395225525
- label: "C"
score: 0.18962091207504272
score: 0.28607121109962463
- label: "U"
score: 0.24161304533481598
- label: "G"
score: 0.11191495507955551
- label: "."
score: 0.09583593904972076
score: 0.12279549986124039
- label: "C"
score: 0.10425350069999695
- label: "-"
score: 0.09150994569063187
---

# ERNIE-RNA
Expand Down Expand Up @@ -130,7 +130,7 @@ from multimolecule import RnaTokenizer, ErnieRnaModel
tokenizer = RnaTokenizer.from_pretrained("multimolecule/ernierna")
model = ErnieRnaModel.from_pretrained("multimolecule/ernierna")

text = "UAGCUUAUCAGACUGAUGUUGA"
text = "UAGCUUAUCAGACUGAUGUUG"
input = tokenizer(text, return_tensors="pt")

output = model(**input)
Expand All @@ -150,7 +150,7 @@ from multimolecule import RnaTokenizer, ErnieRnaForSequencePrediction
tokenizer = RnaTokenizer.from_pretrained("multimolecule/ernierna")
model = ErnieRnaForSequencePrediction.from_pretrained("multimolecule/ernierna")

text = "UAGCUUAUCAGACUGAUGUUGA"
text = "UAGCUUAUCAGACUGAUGUUG"
input = tokenizer(text, return_tensors="pt")
label = torch.tensor([1])

Expand All @@ -171,7 +171,7 @@ from multimolecule import RnaTokenizer, ErnieRnaForTokenPrediction
tokenizer = RnaTokenizer.from_pretrained("multimolecule/ernierna")
model = ErnieRnaForTokenPrediction.from_pretrained("multimolecule/ernierna")

text = "UAGCUUAUCAGACUGAUGUUGA"
text = "UAGCUUAUCAGACUGAUGUUG"
input = tokenizer(text, return_tensors="pt")
label = torch.randint(2, (len(text), ))

Expand All @@ -192,7 +192,7 @@ from multimolecule import RnaTokenizer, ErnieRnaForContactPrediction
tokenizer = RnaTokenizer.from_pretrained("multimolecule/ernierna")
model = ErnieRnaForContactPrediction.from_pretrained("multimolecule/ernierna")

text = "UAGCUUAUCAGACUGAUGUUGA"
text = "UAGCUUAUCAGACUGAUGUUG"
input = tokenizer(text, return_tensors="pt")
label = torch.randint(2, (len(text), len(text)))

Expand Down
20 changes: 10 additions & 10 deletions multimolecule/models/rinalmo/README.md
Original file line number Diff line number Diff line change
Expand Up @@ -27,18 +27,18 @@ widget:
- label: "G"
score: 0.0408296100795269
- example_title: "microRNA-21"
text: "UAGC<mask>UAUCAGACUGAUGUUGA"
text: "UAGC<mask>UAUCAGACUGAUGUUG"
output:
- label: "A"
score: 0.2931748032569885
score: 0.27524828910827637
- label: "U"
score: 0.2710167169570923
score: 0.27015420794487
- label: "X"
score: 0.18341825902462006
score: 0.1874540150165558
- label: "C"
score: 0.16714636981487274
score: 0.16866911947727203
- label: "G"
score: 0.08522326499223709
score: 0.09844783693552017
---

# RiNALMo
Expand Down Expand Up @@ -129,7 +129,7 @@ from multimolecule import RnaTokenizer, RiNALMoModel
tokenizer = RnaTokenizer.from_pretrained("multimolecule/rinalmo")
model = RiNALMoModel.from_pretrained("multimolecule/rinalmo")

text = "UAGCUUAUCAGACUGAUGUUGA"
text = "UAGCUUAUCAGACUGAUGUUG"
input = tokenizer(text, return_tensors="pt")

output = model(**input)
Expand All @@ -149,7 +149,7 @@ from multimolecule import RnaTokenizer, RiNALMoForSequencePrediction
tokenizer = RnaTokenizer.from_pretrained("multimolecule/rinalmo")
model = RiNALMoForSequencePrediction.from_pretrained("multimolecule/rinalmo")

text = "UAGCUUAUCAGACUGAUGUUGA"
text = "UAGCUUAUCAGACUGAUGUUG"
input = tokenizer(text, return_tensors="pt")
label = torch.tensor([1])

Expand All @@ -170,7 +170,7 @@ from multimolecule import RnaTokenizer, RiNALMoForTokenPrediction
tokenizer = RnaTokenizer.from_pretrained("multimolecule/rinalmo")
model = RiNALMoForTokenPrediction.from_pretrained("multimolecule/rinalmo")

text = "UAGCUUAUCAGACUGAUGUUGA"
text = "UAGCUUAUCAGACUGAUGUUG"
input = tokenizer(text, return_tensors="pt")
label = torch.randint(2, (len(text), ))

Expand All @@ -191,7 +191,7 @@ from multimolecule import RnaTokenizer, RiNALMoForContactPrediction
tokenizer = RnaTokenizer.from_pretrained("multimolecule/rinalmo")
model = RiNALMoForContactPrediction.from_pretrained("multimolecule/rinalmo")

text = "UAGCUUAUCAGACUGAUGUUGA"
text = "UAGCUUAUCAGACUGAUGUUG"
input = tokenizer(text, return_tensors="pt")
label = torch.randint(2, (len(text), len(text)))

Expand Down
22 changes: 11 additions & 11 deletions multimolecule/models/rnabert/README.md
Original file line number Diff line number Diff line change
Expand Up @@ -24,18 +24,18 @@ widget:
- label: "<null>"
score: 0.038484156131744385
- example_title: "microRNA-21"
text: "UAGC<mask>UAUCAGACUGAUGUUGA"
text: "UAGC<mask>UAUCAGACUGAUGUUG"
output:
- label: "N"
score: 0.0385337695479393
score: 0.03855736553668976
- label: "I"
score: 0.03851701319217682
score: 0.03851182386279106
- label: "<unk>"
score: 0.03850541263818741
score: 0.038497816771268845
- label: "<null>"
score: 0.03850402310490608
- label: "<cls>"
score: 0.03848475590348244
score: 0.03848177567124367
- label: "-"
score: 0.038468137383461
---

# RNABERT
Expand Down Expand Up @@ -134,7 +134,7 @@ from multimolecule import RnaTokenizer, RnaBertModel
tokenizer = RnaTokenizer.from_pretrained("multimolecule/rnabert")
model = RnaBertModel.from_pretrained("multimolecule/rnabert")

text = "UAGCUUAUCAGACUGAUGUUGA"
text = "UAGCUUAUCAGACUGAUGUUG"
input = tokenizer(text, return_tensors="pt")

output = model(**input)
Expand All @@ -154,7 +154,7 @@ from multimolecule import RnaTokenizer, RnaBertForSequencePrediction
tokenizer = RnaTokenizer.from_pretrained("multimolecule/rnabert")
model = RnaBertForSequencePrediction.from_pretrained("multimolecule/rnabert")

text = "UAGCUUAUCAGACUGAUGUUGA"
text = "UAGCUUAUCAGACUGAUGUUG"
input = tokenizer(text, return_tensors="pt")
label = torch.tensor([1])

Expand All @@ -175,7 +175,7 @@ from multimolecule import RnaTokenizer, RnaBertForTokenPrediction
tokenizer = RnaTokenizer.from_pretrained("multimolecule/rnabert")
model = RnaBertForTokenPrediction.from_pretrained("multimolecule/rnabert")

text = "UAGCUUAUCAGACUGAUGUUGA"
text = "UAGCUUAUCAGACUGAUGUUG"
input = tokenizer(text, return_tensors="pt")
label = torch.randint(2, (len(text), ))

Expand All @@ -196,7 +196,7 @@ from multimolecule import RnaTokenizer, RnaBertForContactPrediction
tokenizer = RnaTokenizer.from_pretrained("multimolecule/rnabert")
model = RnaBertForContactPrediction.from_pretrained("multimolecule/rnabert")

text = "UAGCUUAUCAGACUGAUGUUGA"
text = "UAGCUUAUCAGACUGAUGUUG"
input = tokenizer(text, return_tensors="pt")
label = torch.randint(2, (len(text), len(text)))

Expand Down
26 changes: 13 additions & 13 deletions multimolecule/models/rnaernie/README.md
Original file line number Diff line number Diff line change
Expand Up @@ -24,18 +24,18 @@ widget:
- label: "S"
score: 0.07325706630945206
- example_title: "microRNA-21"
text: "UAGC<mask>UAUCAGACUGAUGUUGA"
text: "UAGC<mask>UAUCAGACUGAUGUUG"
output:
- label: "G"
score: 0.09372635930776596
- label: "R"
score: 0.08816102892160416
- label: "A"
score: 0.08292599022388458
- label: "<eos>"
score: 0.07841548323631287
score: 0.08444530516862869
- label: "R"
score: 0.07878861576318741
- label: "G"
score: 0.07351073622703552
- label: "V"
score: 0.073448047041893
score: 0.07145819813013077
- label: "M"
score: 0.07045349478721619
---

# RNAErnie
Expand Down Expand Up @@ -146,7 +146,7 @@ from multimolecule import RnaTokenizer, RnaErnieModel
tokenizer = RnaTokenizer.from_pretrained("multimolecule/rnaernie")
model = RnaErnieModel.from_pretrained("multimolecule/rnaernie")

text = "UAGCUUAUCAGACUGAUGUUGA"
text = "UAGCUUAUCAGACUGAUGUUG"
input = tokenizer(text, return_tensors="pt")

output = model(**input)
Expand All @@ -166,7 +166,7 @@ from multimolecule import RnaTokenizer, RnaErnieForSequencePrediction
tokenizer = RnaTokenizer.from_pretrained("multimolecule/rnaernie")
model = RnaErnieForSequencePrediction.from_pretrained("multimolecule/rnaernie")

text = "UAGCUUAUCAGACUGAUGUUGA"
text = "UAGCUUAUCAGACUGAUGUUG"
input = tokenizer(text, return_tensors="pt")
label = torch.tensor([1])

Expand All @@ -187,7 +187,7 @@ from multimolecule import RnaTokenizer, RnaErnieForTokenPrediction
tokenizer = RnaTokenizer.from_pretrained("multimolecule/rnaernie")
model = RnaErnieForTokenPrediction.from_pretrained("multimolecule/rnaernie")

text = "UAGCUUAUCAGACUGAUGUUGA"
text = "UAGCUUAUCAGACUGAUGUUG"
input = tokenizer(text, return_tensors="pt")
label = torch.randint(2, (len(text), ))

Expand All @@ -208,7 +208,7 @@ from multimolecule import RnaTokenizer, RnaErnieForContactPrediction
tokenizer = RnaTokenizer.from_pretrained("multimolecule/rnaernie")
model = RnaErnieForContactPrediction.from_pretrained("multimolecule/rnaernie")

text = "UAGCUUAUCAGACUGAUGUUGA"
text = "UAGCUUAUCAGACUGAUGUUG"
input = tokenizer(text, return_tensors="pt")
label = torch.randint(2, (len(text), len(text)))

Expand Down
20 changes: 10 additions & 10 deletions multimolecule/models/rnafm/README.md
Original file line number Diff line number Diff line change
Expand Up @@ -24,18 +24,18 @@ widget:
- label: "A"
score: 0.08898332715034485
- example_title: "microRNA-21"
text: "UAGC<mask>UAUCAGACUGAUGUUGA"
text: "UAGC<mask>UAUCAGACUGAUGUUG"
output:
- label: "."
score: 0.23545819520950317
score: 0.2275155633687973
- label: "*"
score: 0.1889132708311081
score: 0.18255384266376495
- label: "I"
score: 0.15300516784191132
score: 0.14644214510917664
- label: "A"
score: 0.12081773579120636
score: 0.1262909322977066
- label: "U"
score: 0.10451140254735947
score: 0.12270607799291611
---

# RNA-FM
Expand Down Expand Up @@ -162,7 +162,7 @@ from multimolecule import RnaTokenizer, RnaFmModel
tokenizer = RnaTokenizer.from_pretrained("multimolecule/rnafm")
model = RnaFmModel.from_pretrained("multimolecule/rnafm")

text = "UAGCUUAUCAGACUGAUGUUGA"
text = "UAGCUUAUCAGACUGAUGUUG"
input = tokenizer(text, return_tensors="pt")

output = model(**input)
Expand All @@ -182,7 +182,7 @@ from multimolecule import RnaTokenizer, RnaFmForSequencePrediction
tokenizer = RnaTokenizer.from_pretrained("multimolecule/rnafm")
model = RnaFmForSequencePrediction.from_pretrained("multimolecule/rnafm")

text = "UAGCUUAUCAGACUGAUGUUGA"
text = "UAGCUUAUCAGACUGAUGUUG"
input = tokenizer(text, return_tensors="pt")
label = torch.tensor([1])

Expand All @@ -203,7 +203,7 @@ from multimolecule import RnaTokenizer, RnaFmForTokenPrediction
tokenizer = RnaTokenizer.from_pretrained("multimolecule/rnafm")
model = RnaFmForTokenPrediction.from_pretrained("multimolecule/rnafm")

text = "UAGCUUAUCAGACUGAUGUUGA"
text = "UAGCUUAUCAGACUGAUGUUG"
input = tokenizer(text, return_tensors="pt")
label = torch.randint(2, (len(text), ))

Expand All @@ -224,7 +224,7 @@ from multimolecule import RnaTokenizer, RnaFmForContactPrediction
tokenizer = RnaTokenizer.from_pretrained("multimolecule/rnafm")
model = RnaFmForContactPrediction.from_pretrained("multimolecule/rnafm")

text = "UAGCUUAUCAGACUGAUGUUGA"
text = "UAGCUUAUCAGACUGAUGUUG"
input = tokenizer(text, return_tensors="pt")
label = torch.randint(2, (len(text), len(text)))

Expand Down
Loading

0 comments on commit 0f86c56

Please sign in to comment.