Skip to content
This repository has been archived by the owner on Jan 8, 2025. It is now read-only.

Commit

Permalink
Data profiling update (#3)
Browse files Browse the repository at this point in the history
  • Loading branch information
brandomr authored Jul 17, 2023
1 parent 4daa903 commit 2f42c82
Show file tree
Hide file tree
Showing 3 changed files with 49 additions and 82 deletions.
25 changes: 10 additions & 15 deletions api/server.py
Original file line number Diff line number Diff line change
Expand Up @@ -4,7 +4,7 @@

import pypdf

from typing import List
from typing import List, Optional

from fastapi import FastAPI, Response, status, UploadFile, File
from fastapi.middleware.cors import CORSMiddleware
Expand Down Expand Up @@ -111,22 +111,17 @@ async def pdf_extractions(


@app.post("/profile_dataset/{dataset_id}")
def profile_dataset_document(dataset_id: str):
from utils import create_job

operation_name = "operations.dataset_profiling"
def profile_dataset(dataset_id: str, artifact_id: Optional[str] = None):
"""Profile dataset with MIT's profiling service. This optionally accepts an `artifact_id` which
is expected to be some user uploaded document which has had its text extracted and stored to
`metadata.text`.
options = {
"dataset_id": dataset_id,
}
> NOTE: if nothing is found within `metadata.text` of the artifact then it is ignored.
resp = create_job(operation_name=operation_name, options=options)

return resp


@app.post("/profile_dataset/{dataset_id}/{artifact_id}")
def profile_dataset_document(dataset_id: str, artifact_id: str = None):
Args:
dataset_id: the id of the dataset to profile
artifact_id [optional]: the id of the artifact (paper/document) associated with the dataset.
"""
from utils import create_job

operation_name = "operations.dataset_profiling_with_document"
Expand Down
104 changes: 38 additions & 66 deletions workers/operations.py
Original file line number Diff line number Diff line change
Expand Up @@ -153,92 +153,64 @@ def pdf_extractions(*args, **kwargs):
return response


# 2931748e-3932-4cef-b5d7-d0d7e9e7740b
def dataset_profiling(*args, **kwargs):
openai_key = os.getenv("OPENAI_API_KEY")
dataset_id = kwargs.get("dataset_id")

dataset_response, dataset_dataframe, dataset_csv_string = get_dataset_from_tds(
dataset_id
)

dataset_json = dataset_response.json()

# here we perform our 2nd call to the MIT service
resp = requests.post(
url=f"{MIT_API}/annotation/upload_file_extract/?gpt_key={openai_key}",
files={"file": dataset_csv_string},
)
logger.info(f"MIT ANNOTATIONS: {resp.json()}")
mit_annotations = {a["name"]: a for a in resp.json()}

sys.stdout.flush()

columns = []
for c in dataset_dataframe.columns:
annotations = mit_annotations.get(c, {}).get("text_annotations", [])
col = {
"name": c,
"data_type": "float",
"description": annotations[0].strip(),
"annotations": [],
"metadata": {},
}
columns.append(col)

dataset_json["columns"] = columns

resp = requests.put(f"{TDS_API}/datasets/{dataset_id}", json=dataset_json)
dataset_id = resp.json()["id"]

return resp.json()


def dataset_profiling_with_document(*args, **kwargs):
openai_key = os.getenv("OPENAI_API_KEY")

dataset_id = kwargs.get("dataset_id")
artifact_id = kwargs.get("artifact_id")

artifact_json, downloaded_artifact = get_artifact_from_tds(artifact_id=artifact_id)
if artifact_id:
artifact_json, downloaded_artifact = get_artifact_from_tds(artifact_id=artifact_id)
doc_file = artifact_json['metadata'].get('text', 'There is no documentation for this dataset').encode()
else:
doc_file = b'There is no documentation for this dataset'

logger.info(f"document file: {doc_file}")

dataset_response, dataset_dataframe, dataset_csv_string = get_dataset_from_tds(
dataset_id
)
dataset_json = dataset_response.json()

resp = requests.post(
url=f"{MIT_API}/annotation/link_dataset_col_to_dkg",
params={
"csv_str": dataset_csv_string,
"doc": downloaded_artifact,
"gpt_key": openai_key,
},
)
mit_groundings = resp.json()
params = {
'gpt_key': openai_key
}

files = {
'csv_file': ('csv_file', dataset_csv_string.encode()),
'doc_file': ('doc_file', doc_file)
}

logger.info(f"Sending dataset {dataset_id} to MIT service")

resp = requests.post(f"{MIT_API}/cards/get_data_card", params=params, files=files)

logger.info(f"Response received from MIT with status: {resp.status_code}")
logger.debug(f"MIT ANNOTATIONS: {resp.json()}")

#######################################
# processing the results from MIT into the format
# expected by TDS
#######################################
mit_annotations = resp.json()['DATA_PROFILING_RESULT']

sys.stdout.flush()

columns = []
for c in dataset_dataframe.columns:
# Skip any single empty strings that are sometimes returned and drop extra items that are sometimes included (usually the string 'class')
groundings = {
g[0]: g[1]
for g in mit_groundings.get(c, None).get("dkg_groundings", None)
if g and isinstance(g, list)
}
annotation = mit_annotations.get(c, {})

# parse groundings
groundings = {'identifiers': {}}
for g in annotation.get('dkg_groundings',[]):
groundings['identifiers'][g[0]] = g[1]

# remove groundings from annotation object
annotation.pop('dkg_groundings')
annotation['groundings'] = groundings

col = {
"name": c,
"data_type": "float",
"description": "",
"description": annotation.get('description','').strip() ,
"annotations": [],
"metadata": {},
"grounding": {
"identifiers": groundings,
},
"metadata": annotation
}
columns.append(col)

Expand Down
2 changes: 1 addition & 1 deletion workers/utils.py
Original file line number Diff line number Diff line change
Expand Up @@ -126,6 +126,6 @@ def get_dataset_from_tds(dataset_id):
else:
final_df = dataframes[0]

csv_string = final_df.to_csv()
csv_string = final_df.to_csv(index=False)

return dataset, final_df, csv_string

0 comments on commit 2f42c82

Please sign in to comment.