Skip to content

Commit

Permalink
updated equations for clump density PDF
Browse files Browse the repository at this point in the history
  • Loading branch information
CraigYanitski committed Jun 7, 2024
1 parent d77ce7e commit c7a3552
Showing 1 changed file with 7 additions and 5 deletions.
12 changes: 7 additions & 5 deletions docs/_source/theory.rst
Original file line number Diff line number Diff line change
Expand Up @@ -80,15 +80,17 @@ dependence of the total number of hydrogen atoms:
\frac{\mathrm{d}N_\mathrm{H, cl} (n)}{\mathrm{d}n} =
\left\{
\begin{aligned}
- \frac{4\pi\, r_\mathrm{cl}}{\gamma}
\frac{4\pi\, r_\mathrm{cl}}{\gamma}
\left( \frac{n_\mathrm{cl}}{n_\mathrm{s}} \right)^{-\frac{3}{\gamma}}
& \hspace{0.5cm} & n_\mathrm{s} < n < n_\mathrm{core} \\
0 & \hspace{0.5cm} & n = n_\mathrm{core}
\end{aligned}
\right. \hspace{1cm} ,
\right. \hspace{1cm} .
Here we have removed the negative sign from the derivative since to be valid
for increasing density.
The density probability distribution function (PDF) for the spherical clump
can be defined as,
is defined as,

.. math::
\mathcal{P}_\mathrm{cl}(n) \equiv N_\mathrm{H, cl}^{-1}
Expand All @@ -102,9 +104,9 @@ integrating the core to derive its probability, we obtain,
\mathcal{P}_\mathrm{cl}(n) = N_\mathrm{H, cl}^{-1} 4\pi r_\mathrm{cl}^3
\left\{
\begin{aligned}
- \frac{1}{\gamma} \left( \frac{n}{n_\mathrm{s}} \right)^{-\frac{3}{\gamma}}
\frac{1}{\gamma} \left( \frac{n}{n_\mathrm{s}} \right)^{-\frac{3}{\gamma}}
& \hspace{0.5cm} & n_\mathrm{s} < n < n_\mathrm{core} \\
\frac{1}{3} \left( \frac{n}{n_\mathrm{s}} \right)^{\frac{\gamma - 3}{\gamma}}
\frac{1}{3} \left( \frac{n_\mathrm{core}}{n_\mathrm{s}} \right)^{\frac{\gamma - 3}{\gamma}}
& \hspace{0.5cm} & n = n_\mathrm{core}
\end{aligned}
\right. \hspace{1cm} .
Expand Down

0 comments on commit c7a3552

Please sign in to comment.