Skip to content

Commit

Permalink
a bit fix of readme and small refinement
Browse files Browse the repository at this point in the history
  • Loading branch information
CoinCheung committed Dec 2, 2022
1 parent 78c4d61 commit 3833d63
Show file tree
Hide file tree
Showing 3 changed files with 12 additions and 5 deletions.
7 changes: 5 additions & 2 deletions ncnn/segment.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -51,14 +51,17 @@ void inference() {
mod.opt.use_vulkan_compute = 1;
mod.set_vulkan_device(1);
#endif
mod.load_param(mod_param.c_str());
mod.load_model(mod_model.c_str());
// ncnn enable fp16 by default, so we do not need these options
// int8 depends on the model itself, so we do not set here
// bool use_fp16 = false;
// mod.opt.use_fp16_packed = use_fp16;
// mod.opt.use_fp16_storage = use_fp16;
// mod.opt.use_fp16_arithmetic = use_fp16;
mod.opt.use_winograd_convolution = true;

// we should set opt before load model
mod.load_param(mod_param.c_str());
mod.load_model(mod_model.c_str());

// load image, and copy to ncnn mat
cv::Mat im = cv::imread(impth);
Expand Down
4 changes: 2 additions & 2 deletions tensorrt/README.md
Original file line number Diff line number Diff line change
Expand Up @@ -20,7 +20,7 @@ Then we can use either c++ or python to compile the model and run inference.
* ubuntu 18.04
* nvidia Tesla T4 gpu, driver newer than 450.80
* cuda 11.3, cudnn 8
* cmake 3.17.1
* cmake 3.22.0
* opencv built from source
* tensorrt 8.2.5.1

Expand Down Expand Up @@ -49,7 +49,7 @@ $ ./segment compile /path/to/onnx.model /path/to/saved_model.trt --fp16
```
Building an int8 engine is also supported. Firstly, you should make sure your gpu support int8 inference, or you model will not be faster than fp16/fp32. Then you should prepare certain amount of images for int8 calibration. In this example, I use train set of cityscapes for calibration. The command is like this:
```
$ calibrate_int8 # delete this if exists
$ rm calibrate_int8 # delete this if exists
$ ./segment compile /path/to/onnx.model /path/to/saved_model.trt --int8 /path/to/BiSeNet/datasets/cityscapes /path/to/BiSeNet/datasets/cityscapes/train.txt
```
With the above commands, we will have an tensorrt engine named `saved_model.trt` generated.
Expand Down
6 changes: 5 additions & 1 deletion tools/train_amp.py
Original file line number Diff line number Diff line change
Expand Up @@ -8,6 +8,7 @@
import random
import logging
import time
import json
import argparse
import numpy as np
from tabulate import tabulate
Expand Down Expand Up @@ -55,7 +56,10 @@ def set_model(lb_ignore=255):
net = model_factory[cfg.model_type](cfg.n_cats)
if not args.finetune_from is None:
logger.info(f'load pretrained weights from {args.finetune_from}')
net.load_state_dict(torch.load(args.finetune_from, map_location='cpu'))
msg = net.load_state_dict(torch.load(args.finetune_from,
map_location='cpu'), strict=False)
logger.info('\tmissing keys: ' + json.dumps(msg.missing_keys))
logger.info('\tunexpected keys: ' + json.dumps(msg.unexpected_keys))
if cfg.use_sync_bn: net = nn.SyncBatchNorm.convert_sync_batchnorm(net)
net.cuda()
net.train()
Expand Down

0 comments on commit 3833d63

Please sign in to comment.