Skip to content

Latest commit

 

History

History
555 lines (407 loc) · 57.4 KB

ImageOcrApi.md

File metadata and controls

555 lines (407 loc) · 57.4 KB

cloudmersive_ocr_api_client.ImageOcrApi

All URIs are relative to https://api.cloudmersive.com

Method HTTP request Description
image_ocr_image_lines_with_location POST /ocr/image/to/lines-with-location Convert a scanned image into words with location
image_ocr_image_words_with_location POST /ocr/image/to/words-with-location Convert a scanned image into words with location
image_ocr_photo_recognize_business_card POST /ocr/photo/recognize/business-card Recognize a photo of a business card, extract key business information
image_ocr_photo_recognize_form POST /ocr/photo/recognize/form Recognize a photo of a form, extract key fields and business information
image_ocr_photo_recognize_form_advanced POST /ocr/photo/recognize/form/advanced Recognize a photo of a form, extract key fields using stored templates
image_ocr_photo_recognize_receipt POST /ocr/photo/recognize/receipt Recognize a photo of a receipt, extract key business information
image_ocr_photo_to_text POST /ocr/photo/toText Convert a photo of a document into text
image_ocr_photo_words_with_location POST /ocr/photo/to/words-with-location Convert a photo of a document or receipt into words with location
image_ocr_post POST /ocr/image/toText Convert a scanned image into text

image_ocr_image_lines_with_location

ImageToLinesWithLocationResult image_ocr_image_lines_with_location(image_file, language=language, preprocessing=preprocessing)

Convert a scanned image into words with location

Converts an uploaded image in common formats such as JPEG, PNG into lines/text with location information and other metdata via Optical Character Recognition. This API is intended to be run on scanned documents. If you want to OCR photos (e.g. taken with a smart phone camera), be sure to use the photo/toText API instead, as it is designed to unskew the image first.

Example

from __future__ import print_function
import time
import cloudmersive_ocr_api_client
from cloudmersive_ocr_api_client.rest import ApiException
from pprint import pprint

# Configure API key authorization: Apikey
configuration = cloudmersive_ocr_api_client.Configuration()
configuration.api_key['Apikey'] = 'YOUR_API_KEY'
# Uncomment below to setup prefix (e.g. Bearer) for API key, if needed
# configuration.api_key_prefix['Apikey'] = 'Bearer'

# create an instance of the API class
api_instance = cloudmersive_ocr_api_client.ImageOcrApi(cloudmersive_ocr_api_client.ApiClient(configuration))
image_file = '/path/to/file.txt' # file | Image file to perform OCR on.  Common file formats such as PNG, JPEG are supported.
language = 'language_example' # str | Optional, language of the input document, default is English (ENG).  Possible values are ENG (English), ARA (Arabic), ZHO (Chinese - Simplified), ZHO-HANT (Chinese - Traditional), ASM (Assamese), AFR (Afrikaans), AMH (Amharic), AZE (Azerbaijani), AZE-CYRL (Azerbaijani - Cyrillic), BEL (Belarusian), BEN (Bengali), BOD (Tibetan), BOS (Bosnian), BUL (Bulgarian), CAT (Catalan; Valencian), CEB (Cebuano), CES (Czech), CHR (Cherokee), CYM (Welsh), DAN (Danish), DEU (German), DZO (Dzongkha), ELL (Greek), ENM (Archaic/Middle English), EPO (Esperanto), EST (Estonian), EUS (Basque), FAS (Persian), FIN (Finnish), FRA (French), FRK (Frankish), FRM (Middle-French), GLE (Irish), GLG (Galician), GRC (Ancient Greek), HAT (Hatian), HEB (Hebrew), HIN (Hindi), HRV (Croatian), HUN (Hungarian), IKU (Inuktitut), IND (Indonesian), ISL (Icelandic), ITA (Italian), ITA-OLD (Old - Italian), JAV (Javanese), JPN (Japanese), KAN (Kannada), KAT (Georgian), KAT-OLD (Old-Georgian), KAZ (Kazakh), KHM (Central Khmer), KIR (Kirghiz), KOR (Korean), KUR (Kurdish), LAO (Lao), LAT (Latin), LAV (Latvian), LIT (Lithuanian), MAL (Malayalam), MAR (Marathi), MKD (Macedonian), MLT (Maltese), MSA (Malay), MYA (Burmese), NEP (Nepali), NLD (Dutch), NOR (Norwegian), ORI (Oriya), PAN (Panjabi), POL (Polish), POR (Portuguese), PUS (Pushto), RON (Romanian), RUS (Russian), SAN (Sanskrit), SIN (Sinhala), SLK (Slovak), SLV (Slovenian), SPA (Spanish), SPA-OLD (Old Spanish), SQI (Albanian), SRP (Serbian), SRP-LAT (Latin Serbian), SWA (Swahili), SWE (Swedish), SYR (Syriac), TAM (Tamil), TEL (Telugu), TGK (Tajik), TGL (Tagalog), THA (Thai), TIR (Tigrinya), TUR (Turkish), UIG (Uighur), UKR (Ukrainian), URD (Urdu), UZB (Uzbek), UZB-CYR (Cyrillic Uzbek), VIE (Vietnamese), YID (Yiddish) (optional)
preprocessing = 'preprocessing_example' # str | Optional, preprocessing mode, default is 'Auto'.  Possible values are None (no preprocessing of the image), and Auto (automatic image enhancement of the image before OCR is applied; this is recommended). (optional)

try:
    # Convert a scanned image into words with location
    api_response = api_instance.image_ocr_image_lines_with_location(image_file, language=language, preprocessing=preprocessing)
    pprint(api_response)
except ApiException as e:
    print("Exception when calling ImageOcrApi->image_ocr_image_lines_with_location: %s\n" % e)

Parameters

Name Type Description Notes
image_file file Image file to perform OCR on. Common file formats such as PNG, JPEG are supported.
language str Optional, language of the input document, default is English (ENG). Possible values are ENG (English), ARA (Arabic), ZHO (Chinese - Simplified), ZHO-HANT (Chinese - Traditional), ASM (Assamese), AFR (Afrikaans), AMH (Amharic), AZE (Azerbaijani), AZE-CYRL (Azerbaijani - Cyrillic), BEL (Belarusian), BEN (Bengali), BOD (Tibetan), BOS (Bosnian), BUL (Bulgarian), CAT (Catalan; Valencian), CEB (Cebuano), CES (Czech), CHR (Cherokee), CYM (Welsh), DAN (Danish), DEU (German), DZO (Dzongkha), ELL (Greek), ENM (Archaic/Middle English), EPO (Esperanto), EST (Estonian), EUS (Basque), FAS (Persian), FIN (Finnish), FRA (French), FRK (Frankish), FRM (Middle-French), GLE (Irish), GLG (Galician), GRC (Ancient Greek), HAT (Hatian), HEB (Hebrew), HIN (Hindi), HRV (Croatian), HUN (Hungarian), IKU (Inuktitut), IND (Indonesian), ISL (Icelandic), ITA (Italian), ITA-OLD (Old - Italian), JAV (Javanese), JPN (Japanese), KAN (Kannada), KAT (Georgian), KAT-OLD (Old-Georgian), KAZ (Kazakh), KHM (Central Khmer), KIR (Kirghiz), KOR (Korean), KUR (Kurdish), LAO (Lao), LAT (Latin), LAV (Latvian), LIT (Lithuanian), MAL (Malayalam), MAR (Marathi), MKD (Macedonian), MLT (Maltese), MSA (Malay), MYA (Burmese), NEP (Nepali), NLD (Dutch), NOR (Norwegian), ORI (Oriya), PAN (Panjabi), POL (Polish), POR (Portuguese), PUS (Pushto), RON (Romanian), RUS (Russian), SAN (Sanskrit), SIN (Sinhala), SLK (Slovak), SLV (Slovenian), SPA (Spanish), SPA-OLD (Old Spanish), SQI (Albanian), SRP (Serbian), SRP-LAT (Latin Serbian), SWA (Swahili), SWE (Swedish), SYR (Syriac), TAM (Tamil), TEL (Telugu), TGK (Tajik), TGL (Tagalog), THA (Thai), TIR (Tigrinya), TUR (Turkish), UIG (Uighur), UKR (Ukrainian), URD (Urdu), UZB (Uzbek), UZB-CYR (Cyrillic Uzbek), VIE (Vietnamese), YID (Yiddish) [optional]
preprocessing str Optional, preprocessing mode, default is 'Auto'. Possible values are None (no preprocessing of the image), and Auto (automatic image enhancement of the image before OCR is applied; this is recommended). [optional]

Return type

ImageToLinesWithLocationResult

Authorization

Apikey

HTTP request headers

  • Content-Type: multipart/form-data
  • Accept: application/json, text/json, application/xml, text/xml

[Back to top] [Back to API list] [Back to Model list] [Back to README]

image_ocr_image_words_with_location

ImageToWordsWithLocationResult image_ocr_image_words_with_location(image_file, language=language, preprocessing=preprocessing)

Convert a scanned image into words with location

Converts an uploaded image in common formats such as JPEG, PNG into words/text with location information and other metdata via Optical Character Recognition. This API is intended to be run on scanned documents. If you want to OCR photos (e.g. taken with a smart phone camera), be sure to use the photo/toText API instead, as it is designed to unskew the image first.

Example

from __future__ import print_function
import time
import cloudmersive_ocr_api_client
from cloudmersive_ocr_api_client.rest import ApiException
from pprint import pprint

# Configure API key authorization: Apikey
configuration = cloudmersive_ocr_api_client.Configuration()
configuration.api_key['Apikey'] = 'YOUR_API_KEY'
# Uncomment below to setup prefix (e.g. Bearer) for API key, if needed
# configuration.api_key_prefix['Apikey'] = 'Bearer'

# create an instance of the API class
api_instance = cloudmersive_ocr_api_client.ImageOcrApi(cloudmersive_ocr_api_client.ApiClient(configuration))
image_file = '/path/to/file.txt' # file | Image file to perform OCR on.  Common file formats such as PNG, JPEG are supported.
language = 'language_example' # str | Optional, language of the input document, default is English (ENG).  Possible values are ENG (English), ARA (Arabic), ZHO (Chinese - Simplified), ZHO-HANT (Chinese - Traditional), ASM (Assamese), AFR (Afrikaans), AMH (Amharic), AZE (Azerbaijani), AZE-CYRL (Azerbaijani - Cyrillic), BEL (Belarusian), BEN (Bengali), BOD (Tibetan), BOS (Bosnian), BUL (Bulgarian), CAT (Catalan; Valencian), CEB (Cebuano), CES (Czech), CHR (Cherokee), CYM (Welsh), DAN (Danish), DEU (German), DZO (Dzongkha), ELL (Greek), ENM (Archaic/Middle English), EPO (Esperanto), EST (Estonian), EUS (Basque), FAS (Persian), FIN (Finnish), FRA (French), FRK (Frankish), FRM (Middle-French), GLE (Irish), GLG (Galician), GRC (Ancient Greek), HAT (Hatian), HEB (Hebrew), HIN (Hindi), HRV (Croatian), HUN (Hungarian), IKU (Inuktitut), IND (Indonesian), ISL (Icelandic), ITA (Italian), ITA-OLD (Old - Italian), JAV (Javanese), JPN (Japanese), KAN (Kannada), KAT (Georgian), KAT-OLD (Old-Georgian), KAZ (Kazakh), KHM (Central Khmer), KIR (Kirghiz), KOR (Korean), KUR (Kurdish), LAO (Lao), LAT (Latin), LAV (Latvian), LIT (Lithuanian), MAL (Malayalam), MAR (Marathi), MKD (Macedonian), MLT (Maltese), MSA (Malay), MYA (Burmese), NEP (Nepali), NLD (Dutch), NOR (Norwegian), ORI (Oriya), PAN (Panjabi), POL (Polish), POR (Portuguese), PUS (Pushto), RON (Romanian), RUS (Russian), SAN (Sanskrit), SIN (Sinhala), SLK (Slovak), SLV (Slovenian), SPA (Spanish), SPA-OLD (Old Spanish), SQI (Albanian), SRP (Serbian), SRP-LAT (Latin Serbian), SWA (Swahili), SWE (Swedish), SYR (Syriac), TAM (Tamil), TEL (Telugu), TGK (Tajik), TGL (Tagalog), THA (Thai), TIR (Tigrinya), TUR (Turkish), UIG (Uighur), UKR (Ukrainian), URD (Urdu), UZB (Uzbek), UZB-CYR (Cyrillic Uzbek), VIE (Vietnamese), YID (Yiddish) (optional)
preprocessing = 'preprocessing_example' # str | Optional, preprocessing mode, default is 'Auto'.  Possible values are None (no preprocessing of the image), and Auto (automatic image enhancement of the image before OCR is applied; this is recommended). (optional)

try:
    # Convert a scanned image into words with location
    api_response = api_instance.image_ocr_image_words_with_location(image_file, language=language, preprocessing=preprocessing)
    pprint(api_response)
except ApiException as e:
    print("Exception when calling ImageOcrApi->image_ocr_image_words_with_location: %s\n" % e)

Parameters

Name Type Description Notes
image_file file Image file to perform OCR on. Common file formats such as PNG, JPEG are supported.
language str Optional, language of the input document, default is English (ENG). Possible values are ENG (English), ARA (Arabic), ZHO (Chinese - Simplified), ZHO-HANT (Chinese - Traditional), ASM (Assamese), AFR (Afrikaans), AMH (Amharic), AZE (Azerbaijani), AZE-CYRL (Azerbaijani - Cyrillic), BEL (Belarusian), BEN (Bengali), BOD (Tibetan), BOS (Bosnian), BUL (Bulgarian), CAT (Catalan; Valencian), CEB (Cebuano), CES (Czech), CHR (Cherokee), CYM (Welsh), DAN (Danish), DEU (German), DZO (Dzongkha), ELL (Greek), ENM (Archaic/Middle English), EPO (Esperanto), EST (Estonian), EUS (Basque), FAS (Persian), FIN (Finnish), FRA (French), FRK (Frankish), FRM (Middle-French), GLE (Irish), GLG (Galician), GRC (Ancient Greek), HAT (Hatian), HEB (Hebrew), HIN (Hindi), HRV (Croatian), HUN (Hungarian), IKU (Inuktitut), IND (Indonesian), ISL (Icelandic), ITA (Italian), ITA-OLD (Old - Italian), JAV (Javanese), JPN (Japanese), KAN (Kannada), KAT (Georgian), KAT-OLD (Old-Georgian), KAZ (Kazakh), KHM (Central Khmer), KIR (Kirghiz), KOR (Korean), KUR (Kurdish), LAO (Lao), LAT (Latin), LAV (Latvian), LIT (Lithuanian), MAL (Malayalam), MAR (Marathi), MKD (Macedonian), MLT (Maltese), MSA (Malay), MYA (Burmese), NEP (Nepali), NLD (Dutch), NOR (Norwegian), ORI (Oriya), PAN (Panjabi), POL (Polish), POR (Portuguese), PUS (Pushto), RON (Romanian), RUS (Russian), SAN (Sanskrit), SIN (Sinhala), SLK (Slovak), SLV (Slovenian), SPA (Spanish), SPA-OLD (Old Spanish), SQI (Albanian), SRP (Serbian), SRP-LAT (Latin Serbian), SWA (Swahili), SWE (Swedish), SYR (Syriac), TAM (Tamil), TEL (Telugu), TGK (Tajik), TGL (Tagalog), THA (Thai), TIR (Tigrinya), TUR (Turkish), UIG (Uighur), UKR (Ukrainian), URD (Urdu), UZB (Uzbek), UZB-CYR (Cyrillic Uzbek), VIE (Vietnamese), YID (Yiddish) [optional]
preprocessing str Optional, preprocessing mode, default is 'Auto'. Possible values are None (no preprocessing of the image), and Auto (automatic image enhancement of the image before OCR is applied; this is recommended). [optional]

Return type

ImageToWordsWithLocationResult

Authorization

Apikey

HTTP request headers

  • Content-Type: multipart/form-data
  • Accept: application/json, text/json, application/xml, text/xml

[Back to top] [Back to API list] [Back to Model list] [Back to README]

image_ocr_photo_recognize_business_card

BusinessCardRecognitionResult image_ocr_photo_recognize_business_card(image_file)

Recognize a photo of a business card, extract key business information

Analyzes a photograph of a business card as input, and outputs key business information such as the name of the person, name of the business, the address of the business, the phone number, the email address and more.

Example

from __future__ import print_function
import time
import cloudmersive_ocr_api_client
from cloudmersive_ocr_api_client.rest import ApiException
from pprint import pprint

# Configure API key authorization: Apikey
configuration = cloudmersive_ocr_api_client.Configuration()
configuration.api_key['Apikey'] = 'YOUR_API_KEY'
# Uncomment below to setup prefix (e.g. Bearer) for API key, if needed
# configuration.api_key_prefix['Apikey'] = 'Bearer'

# create an instance of the API class
api_instance = cloudmersive_ocr_api_client.ImageOcrApi(cloudmersive_ocr_api_client.ApiClient(configuration))
image_file = '/path/to/file.txt' # file | Image file to perform OCR on.  Common file formats such as PNG, JPEG are supported.

try:
    # Recognize a photo of a business card, extract key business information
    api_response = api_instance.image_ocr_photo_recognize_business_card(image_file)
    pprint(api_response)
except ApiException as e:
    print("Exception when calling ImageOcrApi->image_ocr_photo_recognize_business_card: %s\n" % e)

Parameters

Name Type Description Notes
image_file file Image file to perform OCR on. Common file formats such as PNG, JPEG are supported.

Return type

BusinessCardRecognitionResult

Authorization

Apikey

HTTP request headers

  • Content-Type: multipart/form-data
  • Accept: application/json, text/json, application/xml, text/xml

[Back to top] [Back to API list] [Back to Model list] [Back to README]

image_ocr_photo_recognize_form

FormRecognitionResult image_ocr_photo_recognize_form(image_file, form_template_definition=form_template_definition, recognition_mode=recognition_mode, preprocessing=preprocessing, diagnostics=diagnostics, language=language)

Recognize a photo of a form, extract key fields and business information

Analyzes a photograph of a form as input, and outputs key business fields and information. Customzie data to be extracted by defining fields for the form.

Example

from __future__ import print_function
import time
import cloudmersive_ocr_api_client
from cloudmersive_ocr_api_client.rest import ApiException
from pprint import pprint

# Configure API key authorization: Apikey
configuration = cloudmersive_ocr_api_client.Configuration()
configuration.api_key['Apikey'] = 'YOUR_API_KEY'
# Uncomment below to setup prefix (e.g. Bearer) for API key, if needed
# configuration.api_key_prefix['Apikey'] = 'Bearer'

# create an instance of the API class
api_instance = cloudmersive_ocr_api_client.ImageOcrApi(cloudmersive_ocr_api_client.ApiClient(configuration))
image_file = '/path/to/file.txt' # file | Image file to perform OCR on.  Common file formats such as PNG, JPEG are supported.
form_template_definition = NULL # object | Form field definitions (optional)
recognition_mode = 'recognition_mode_example' # str | Optional, enable advanced recognition mode by specifying 'Advanced', enable handwriting recognition by specifying 'EnableHandwriting'.  Default is disabled. (optional)
preprocessing = 'preprocessing_example' # str | Optional, preprocessing mode, default is 'Auto'.  Possible values are None (no preprocessing of the image), and Auto (automatic image enhancement of the image - including automatic unrotation of the image - before OCR is applied; this is recommended).  Set this to 'None' if you do not want to use automatic image unrotation and enhancement. (optional)
diagnostics = 'diagnostics_example' # str | Optional, diagnostics mode, default is 'false'.  Possible values are 'true' (will set DiagnosticImage to a diagnostic PNG image in the result), and 'false' (no diagnostics are enabled; this is recommended for best performance). (optional)
language = 'language_example' # str | Optional, language of the input document, default is English (ENG).  Possible values are ENG (English), ARA (Arabic), ZHO (Chinese - Simplified), ZHO-HANT (Chinese - Traditional), ASM (Assamese), AFR (Afrikaans), AMH (Amharic), AZE (Azerbaijani), AZE-CYRL (Azerbaijani - Cyrillic), BEL (Belarusian), BEN (Bengali), BOD (Tibetan), BOS (Bosnian), BUL (Bulgarian), CAT (Catalan; Valencian), CEB (Cebuano), CES (Czech), CHR (Cherokee), CYM (Welsh), DAN (Danish), DEU (German), DZO (Dzongkha), ELL (Greek), ENM (Archaic/Middle English), EPO (Esperanto), EST (Estonian), EUS (Basque), FAS (Persian), FIN (Finnish), FRA (French), FRK (Frankish), FRM (Middle-French), GLE (Irish), GLG (Galician), GRC (Ancient Greek), HAT (Hatian), HEB (Hebrew), HIN (Hindi), HRV (Croatian), HUN (Hungarian), IKU (Inuktitut), IND (Indonesian), ISL (Icelandic), ITA (Italian), ITA-OLD (Old - Italian), JAV (Javanese), JPN (Japanese), KAN (Kannada), KAT (Georgian), KAT-OLD (Old-Georgian), KAZ (Kazakh), KHM (Central Khmer), KIR (Kirghiz), KOR (Korean), KUR (Kurdish), LAO (Lao), LAT (Latin), LAV (Latvian), LIT (Lithuanian), MAL (Malayalam), MAR (Marathi), MKD (Macedonian), MLT (Maltese), MSA (Malay), MYA (Burmese), NEP (Nepali), NLD (Dutch), NOR (Norwegian), ORI (Oriya), PAN (Panjabi), POL (Polish), POR (Portuguese), PUS (Pushto), RON (Romanian), RUS (Russian), SAN (Sanskrit), SIN (Sinhala), SLK (Slovak), SLV (Slovenian), SPA (Spanish), SPA-OLD (Old Spanish), SQI (Albanian), SRP (Serbian), SRP-LAT (Latin Serbian), SWA (Swahili), SWE (Swedish), SYR (Syriac), TAM (Tamil), TEL (Telugu), TGK (Tajik), TGL (Tagalog), THA (Thai), TIR (Tigrinya), TUR (Turkish), UIG (Uighur), UKR (Ukrainian), URD (Urdu), UZB (Uzbek), UZB-CYR (Cyrillic Uzbek), VIE (Vietnamese), YID (Yiddish) (optional)

try:
    # Recognize a photo of a form, extract key fields and business information
    api_response = api_instance.image_ocr_photo_recognize_form(image_file, form_template_definition=form_template_definition, recognition_mode=recognition_mode, preprocessing=preprocessing, diagnostics=diagnostics, language=language)
    pprint(api_response)
except ApiException as e:
    print("Exception when calling ImageOcrApi->image_ocr_photo_recognize_form: %s\n" % e)

Parameters

Name Type Description Notes
image_file file Image file to perform OCR on. Common file formats such as PNG, JPEG are supported.
form_template_definition object Form field definitions [optional]
recognition_mode str Optional, enable advanced recognition mode by specifying 'Advanced', enable handwriting recognition by specifying 'EnableHandwriting'. Default is disabled. [optional]
preprocessing str Optional, preprocessing mode, default is 'Auto'. Possible values are None (no preprocessing of the image), and Auto (automatic image enhancement of the image - including automatic unrotation of the image - before OCR is applied; this is recommended). Set this to 'None' if you do not want to use automatic image unrotation and enhancement. [optional]
diagnostics str Optional, diagnostics mode, default is 'false'. Possible values are 'true' (will set DiagnosticImage to a diagnostic PNG image in the result), and 'false' (no diagnostics are enabled; this is recommended for best performance). [optional]
language str Optional, language of the input document, default is English (ENG). Possible values are ENG (English), ARA (Arabic), ZHO (Chinese - Simplified), ZHO-HANT (Chinese - Traditional), ASM (Assamese), AFR (Afrikaans), AMH (Amharic), AZE (Azerbaijani), AZE-CYRL (Azerbaijani - Cyrillic), BEL (Belarusian), BEN (Bengali), BOD (Tibetan), BOS (Bosnian), BUL (Bulgarian), CAT (Catalan; Valencian), CEB (Cebuano), CES (Czech), CHR (Cherokee), CYM (Welsh), DAN (Danish), DEU (German), DZO (Dzongkha), ELL (Greek), ENM (Archaic/Middle English), EPO (Esperanto), EST (Estonian), EUS (Basque), FAS (Persian), FIN (Finnish), FRA (French), FRK (Frankish), FRM (Middle-French), GLE (Irish), GLG (Galician), GRC (Ancient Greek), HAT (Hatian), HEB (Hebrew), HIN (Hindi), HRV (Croatian), HUN (Hungarian), IKU (Inuktitut), IND (Indonesian), ISL (Icelandic), ITA (Italian), ITA-OLD (Old - Italian), JAV (Javanese), JPN (Japanese), KAN (Kannada), KAT (Georgian), KAT-OLD (Old-Georgian), KAZ (Kazakh), KHM (Central Khmer), KIR (Kirghiz), KOR (Korean), KUR (Kurdish), LAO (Lao), LAT (Latin), LAV (Latvian), LIT (Lithuanian), MAL (Malayalam), MAR (Marathi), MKD (Macedonian), MLT (Maltese), MSA (Malay), MYA (Burmese), NEP (Nepali), NLD (Dutch), NOR (Norwegian), ORI (Oriya), PAN (Panjabi), POL (Polish), POR (Portuguese), PUS (Pushto), RON (Romanian), RUS (Russian), SAN (Sanskrit), SIN (Sinhala), SLK (Slovak), SLV (Slovenian), SPA (Spanish), SPA-OLD (Old Spanish), SQI (Albanian), SRP (Serbian), SRP-LAT (Latin Serbian), SWA (Swahili), SWE (Swedish), SYR (Syriac), TAM (Tamil), TEL (Telugu), TGK (Tajik), TGL (Tagalog), THA (Thai), TIR (Tigrinya), TUR (Turkish), UIG (Uighur), UKR (Ukrainian), URD (Urdu), UZB (Uzbek), UZB-CYR (Cyrillic Uzbek), VIE (Vietnamese), YID (Yiddish) [optional]

Return type

FormRecognitionResult

Authorization

Apikey

HTTP request headers

  • Content-Type: multipart/form-data
  • Accept: application/json, text/json, application/xml, text/xml

[Back to top] [Back to API list] [Back to Model list] [Back to README]

image_ocr_photo_recognize_form_advanced

FormRecognitionResult image_ocr_photo_recognize_form_advanced(image_file, bucket_id=bucket_id, bucket_secret_key=bucket_secret_key, recognition_mode=recognition_mode, preprocessing=preprocessing, diagnostics=diagnostics)

Recognize a photo of a form, extract key fields using stored templates

Analyzes a photograph of a form as input, and outputs key business fields and information. Customzie data to be extracted by defining fields for the form. Uses template definitions stored in Cloudmersive Configuration; to configure stored templates in a configuration bucket, log into Cloudmersive Management Portal and navigate to Settings > API Configuration > Create Bucket

Example

from __future__ import print_function
import time
import cloudmersive_ocr_api_client
from cloudmersive_ocr_api_client.rest import ApiException
from pprint import pprint

# Configure API key authorization: Apikey
configuration = cloudmersive_ocr_api_client.Configuration()
configuration.api_key['Apikey'] = 'YOUR_API_KEY'
# Uncomment below to setup prefix (e.g. Bearer) for API key, if needed
# configuration.api_key_prefix['Apikey'] = 'Bearer'

# create an instance of the API class
api_instance = cloudmersive_ocr_api_client.ImageOcrApi(cloudmersive_ocr_api_client.ApiClient(configuration))
image_file = '/path/to/file.txt' # file | Image file to perform OCR on.  Common file formats such as PNG, JPEG are supported.
bucket_id = 'bucket_id_example' # str | Bucket ID of the Configuration Bucket storing the form templates (optional)
bucket_secret_key = 'bucket_secret_key_example' # str | Bucket Secret Key of the Configuration Bucket storing the form templates (optional)
recognition_mode = 'recognition_mode_example' # str | Optional, enable advanced recognition mode by specifying 'Advanced', enable handwriting recognition by specifying 'EnableHandwriting'.  Default is disabled. (optional)
preprocessing = 'preprocessing_example' # str | Optional, preprocessing mode, default is 'Auto'.  Possible values are None (no preprocessing of the image), and Auto (automatic image enhancement of the image - including automatic unrotation of the image - before OCR is applied; this is recommended).  Set this to 'None' if you do not want to use automatic image unrotation and enhancement. (optional)
diagnostics = 'diagnostics_example' # str | Optional, diagnostics mode, default is 'false'.  Possible values are 'true' (will set DiagnosticImage to a diagnostic PNG image in the result), and 'false' (no diagnostics are enabled; this is recommended for best performance). (optional)

try:
    # Recognize a photo of a form, extract key fields using stored templates
    api_response = api_instance.image_ocr_photo_recognize_form_advanced(image_file, bucket_id=bucket_id, bucket_secret_key=bucket_secret_key, recognition_mode=recognition_mode, preprocessing=preprocessing, diagnostics=diagnostics)
    pprint(api_response)
except ApiException as e:
    print("Exception when calling ImageOcrApi->image_ocr_photo_recognize_form_advanced: %s\n" % e)

Parameters

Name Type Description Notes
image_file file Image file to perform OCR on. Common file formats such as PNG, JPEG are supported.
bucket_id str Bucket ID of the Configuration Bucket storing the form templates [optional]
bucket_secret_key str Bucket Secret Key of the Configuration Bucket storing the form templates [optional]
recognition_mode str Optional, enable advanced recognition mode by specifying 'Advanced', enable handwriting recognition by specifying 'EnableHandwriting'. Default is disabled. [optional]
preprocessing str Optional, preprocessing mode, default is 'Auto'. Possible values are None (no preprocessing of the image), and Auto (automatic image enhancement of the image - including automatic unrotation of the image - before OCR is applied; this is recommended). Set this to 'None' if you do not want to use automatic image unrotation and enhancement. [optional]
diagnostics str Optional, diagnostics mode, default is 'false'. Possible values are 'true' (will set DiagnosticImage to a diagnostic PNG image in the result), and 'false' (no diagnostics are enabled; this is recommended for best performance). [optional]

Return type

FormRecognitionResult

Authorization

Apikey

HTTP request headers

  • Content-Type: multipart/form-data
  • Accept: application/json, text/json, application/xml, text/xml

[Back to top] [Back to API list] [Back to Model list] [Back to README]

image_ocr_photo_recognize_receipt

ReceiptRecognitionResult image_ocr_photo_recognize_receipt(image_file, recognition_mode=recognition_mode, language=language, preprocessing=preprocessing)

Recognize a photo of a receipt, extract key business information

Analyzes a photograph of a receipt as input, and outputs key business information such as the name of the business, the address of the business, the phone number of the business, the total of the receipt, the date of the receipt, and more.

Example

from __future__ import print_function
import time
import cloudmersive_ocr_api_client
from cloudmersive_ocr_api_client.rest import ApiException
from pprint import pprint

# Configure API key authorization: Apikey
configuration = cloudmersive_ocr_api_client.Configuration()
configuration.api_key['Apikey'] = 'YOUR_API_KEY'
# Uncomment below to setup prefix (e.g. Bearer) for API key, if needed
# configuration.api_key_prefix['Apikey'] = 'Bearer'

# create an instance of the API class
api_instance = cloudmersive_ocr_api_client.ImageOcrApi(cloudmersive_ocr_api_client.ApiClient(configuration))
image_file = '/path/to/file.txt' # file | Image file to perform OCR on.  Common file formats such as PNG, JPEG are supported.
recognition_mode = 'recognition_mode_example' # str | Optional, enable advanced recognition mode by specifying 'Advanced', enable handwriting recognition by specifying 'EnableHandwriting'.  Default is disabled. (optional)
language = 'language_example' # str | Optional, language of the input document, default is English (ENG).  Possible values are ENG (English), ARA (Arabic), ZHO (Chinese - Simplified), ZHO-HANT (Chinese - Traditional), ASM (Assamese), AFR (Afrikaans), AMH (Amharic), AZE (Azerbaijani), AZE-CYRL (Azerbaijani - Cyrillic), BEL (Belarusian), BEN (Bengali), BOD (Tibetan), BOS (Bosnian), BUL (Bulgarian), CAT (Catalan; Valencian), CEB (Cebuano), CES (Czech), CHR (Cherokee), CYM (Welsh), DAN (Danish), DEU (German), DZO (Dzongkha), ELL (Greek), ENM (Archaic/Middle English), EPO (Esperanto), EST (Estonian), EUS (Basque), FAS (Persian), FIN (Finnish), FRA (French), FRK (Frankish), FRM (Middle-French), GLE (Irish), GLG (Galician), GRC (Ancient Greek), HAT (Hatian), HEB (Hebrew), HIN (Hindi), HRV (Croatian), HUN (Hungarian), IKU (Inuktitut), IND (Indonesian), ISL (Icelandic), ITA (Italian), ITA-OLD (Old - Italian), JAV (Javanese), JPN (Japanese), KAN (Kannada), KAT (Georgian), KAT-OLD (Old-Georgian), KAZ (Kazakh), KHM (Central Khmer), KIR (Kirghiz), KOR (Korean), KUR (Kurdish), LAO (Lao), LAT (Latin), LAV (Latvian), LIT (Lithuanian), MAL (Malayalam), MAR (Marathi), MKD (Macedonian), MLT (Maltese), MSA (Malay), MYA (Burmese), NEP (Nepali), NLD (Dutch), NOR (Norwegian), ORI (Oriya), PAN (Panjabi), POL (Polish), POR (Portuguese), PUS (Pushto), RON (Romanian), RUS (Russian), SAN (Sanskrit), SIN (Sinhala), SLK (Slovak), SLV (Slovenian), SPA (Spanish), SPA-OLD (Old Spanish), SQI (Albanian), SRP (Serbian), SRP-LAT (Latin Serbian), SWA (Swahili), SWE (Swedish), SYR (Syriac), TAM (Tamil), TEL (Telugu), TGK (Tajik), TGL (Tagalog), THA (Thai), TIR (Tigrinya), TUR (Turkish), UIG (Uighur), UKR (Ukrainian), URD (Urdu), UZB (Uzbek), UZB-CYR (Cyrillic Uzbek), VIE (Vietnamese), YID (Yiddish) (optional)
preprocessing = 'preprocessing_example' # str | Optional, preprocessing mode, default is 'None'.  Possible values are None (no preprocessing of the image), and 'Advanced' (automatic image enhancement of the image before OCR is applied; this is recommended and needed to handle rotated receipts). (optional)

try:
    # Recognize a photo of a receipt, extract key business information
    api_response = api_instance.image_ocr_photo_recognize_receipt(image_file, recognition_mode=recognition_mode, language=language, preprocessing=preprocessing)
    pprint(api_response)
except ApiException as e:
    print("Exception when calling ImageOcrApi->image_ocr_photo_recognize_receipt: %s\n" % e)

Parameters

Name Type Description Notes
image_file file Image file to perform OCR on. Common file formats such as PNG, JPEG are supported.
recognition_mode str Optional, enable advanced recognition mode by specifying 'Advanced', enable handwriting recognition by specifying 'EnableHandwriting'. Default is disabled. [optional]
language str Optional, language of the input document, default is English (ENG). Possible values are ENG (English), ARA (Arabic), ZHO (Chinese - Simplified), ZHO-HANT (Chinese - Traditional), ASM (Assamese), AFR (Afrikaans), AMH (Amharic), AZE (Azerbaijani), AZE-CYRL (Azerbaijani - Cyrillic), BEL (Belarusian), BEN (Bengali), BOD (Tibetan), BOS (Bosnian), BUL (Bulgarian), CAT (Catalan; Valencian), CEB (Cebuano), CES (Czech), CHR (Cherokee), CYM (Welsh), DAN (Danish), DEU (German), DZO (Dzongkha), ELL (Greek), ENM (Archaic/Middle English), EPO (Esperanto), EST (Estonian), EUS (Basque), FAS (Persian), FIN (Finnish), FRA (French), FRK (Frankish), FRM (Middle-French), GLE (Irish), GLG (Galician), GRC (Ancient Greek), HAT (Hatian), HEB (Hebrew), HIN (Hindi), HRV (Croatian), HUN (Hungarian), IKU (Inuktitut), IND (Indonesian), ISL (Icelandic), ITA (Italian), ITA-OLD (Old - Italian), JAV (Javanese), JPN (Japanese), KAN (Kannada), KAT (Georgian), KAT-OLD (Old-Georgian), KAZ (Kazakh), KHM (Central Khmer), KIR (Kirghiz), KOR (Korean), KUR (Kurdish), LAO (Lao), LAT (Latin), LAV (Latvian), LIT (Lithuanian), MAL (Malayalam), MAR (Marathi), MKD (Macedonian), MLT (Maltese), MSA (Malay), MYA (Burmese), NEP (Nepali), NLD (Dutch), NOR (Norwegian), ORI (Oriya), PAN (Panjabi), POL (Polish), POR (Portuguese), PUS (Pushto), RON (Romanian), RUS (Russian), SAN (Sanskrit), SIN (Sinhala), SLK (Slovak), SLV (Slovenian), SPA (Spanish), SPA-OLD (Old Spanish), SQI (Albanian), SRP (Serbian), SRP-LAT (Latin Serbian), SWA (Swahili), SWE (Swedish), SYR (Syriac), TAM (Tamil), TEL (Telugu), TGK (Tajik), TGL (Tagalog), THA (Thai), TIR (Tigrinya), TUR (Turkish), UIG (Uighur), UKR (Ukrainian), URD (Urdu), UZB (Uzbek), UZB-CYR (Cyrillic Uzbek), VIE (Vietnamese), YID (Yiddish) [optional]
preprocessing str Optional, preprocessing mode, default is 'None'. Possible values are None (no preprocessing of the image), and 'Advanced' (automatic image enhancement of the image before OCR is applied; this is recommended and needed to handle rotated receipts). [optional]

Return type

ReceiptRecognitionResult

Authorization

Apikey

HTTP request headers

  • Content-Type: multipart/form-data
  • Accept: application/json, text/json, application/xml, text/xml

[Back to top] [Back to API list] [Back to Model list] [Back to README]

image_ocr_photo_to_text

ImageToTextResponse image_ocr_photo_to_text(image_file, recognition_mode=recognition_mode, language=language)

Convert a photo of a document into text

Converts an uploaded photo of a document in common formats such as JPEG, PNG into text via Optical Character Recognition. This API is intended to be run on photos of documents, e.g. taken with a smartphone and supports cases where other content, such as a desk, are in the frame and the camera is crooked. If you want to OCR a scanned image, use the image/toText API call instead as it is designed for scanned images.

Example

from __future__ import print_function
import time
import cloudmersive_ocr_api_client
from cloudmersive_ocr_api_client.rest import ApiException
from pprint import pprint

# Configure API key authorization: Apikey
configuration = cloudmersive_ocr_api_client.Configuration()
configuration.api_key['Apikey'] = 'YOUR_API_KEY'
# Uncomment below to setup prefix (e.g. Bearer) for API key, if needed
# configuration.api_key_prefix['Apikey'] = 'Bearer'

# create an instance of the API class
api_instance = cloudmersive_ocr_api_client.ImageOcrApi(cloudmersive_ocr_api_client.ApiClient(configuration))
image_file = '/path/to/file.txt' # file | Image file to perform OCR on.  Common file formats such as PNG, JPEG are supported.
recognition_mode = 'recognition_mode_example' # str | Optional; possible values are 'Basic' which provides basic recognition and is not resillient to page rotation, skew or low quality images uses 1-2 API calls; 'Normal' which provides highly fault tolerant OCR recognition uses 14-16 API calls; and 'Advanced' which provides the highest quality and most fault-tolerant recognition uses 28-30 API calls.  Default recognition mode is 'Advanced' (optional)
language = 'language_example' # str | Optional, language of the input document, default is English (ENG).  Possible values are ENG (English), ARA (Arabic), ZHO (Chinese - Simplified), ZHO-HANT (Chinese - Traditional), ASM (Assamese), AFR (Afrikaans), AMH (Amharic), AZE (Azerbaijani), AZE-CYRL (Azerbaijani - Cyrillic), BEL (Belarusian), BEN (Bengali), BOD (Tibetan), BOS (Bosnian), BUL (Bulgarian), CAT (Catalan; Valencian), CEB (Cebuano), CES (Czech), CHR (Cherokee), CYM (Welsh), DAN (Danish), DEU (German), DZO (Dzongkha), ELL (Greek), ENM (Archaic/Middle English), EPO (Esperanto), EST (Estonian), EUS (Basque), FAS (Persian), FIN (Finnish), FRA (French), FRK (Frankish), FRM (Middle-French), GLE (Irish), GLG (Galician), GRC (Ancient Greek), HAT (Hatian), HEB (Hebrew), HIN (Hindi), HRV (Croatian), HUN (Hungarian), IKU (Inuktitut), IND (Indonesian), ISL (Icelandic), ITA (Italian), ITA-OLD (Old - Italian), JAV (Javanese), JPN (Japanese), KAN (Kannada), KAT (Georgian), KAT-OLD (Old-Georgian), KAZ (Kazakh), KHM (Central Khmer), KIR (Kirghiz), KOR (Korean), KUR (Kurdish), LAO (Lao), LAT (Latin), LAV (Latvian), LIT (Lithuanian), MAL (Malayalam), MAR (Marathi), MKD (Macedonian), MLT (Maltese), MSA (Malay), MYA (Burmese), NEP (Nepali), NLD (Dutch), NOR (Norwegian), ORI (Oriya), PAN (Panjabi), POL (Polish), POR (Portuguese), PUS (Pushto), RON (Romanian), RUS (Russian), SAN (Sanskrit), SIN (Sinhala), SLK (Slovak), SLV (Slovenian), SPA (Spanish), SPA-OLD (Old Spanish), SQI (Albanian), SRP (Serbian), SRP-LAT (Latin Serbian), SWA (Swahili), SWE (Swedish), SYR (Syriac), TAM (Tamil), TEL (Telugu), TGK (Tajik), TGL (Tagalog), THA (Thai), TIR (Tigrinya), TUR (Turkish), UIG (Uighur), UKR (Ukrainian), URD (Urdu), UZB (Uzbek), UZB-CYR (Cyrillic Uzbek), VIE (Vietnamese), YID (Yiddish) (optional)

try:
    # Convert a photo of a document into text
    api_response = api_instance.image_ocr_photo_to_text(image_file, recognition_mode=recognition_mode, language=language)
    pprint(api_response)
except ApiException as e:
    print("Exception when calling ImageOcrApi->image_ocr_photo_to_text: %s\n" % e)

Parameters

Name Type Description Notes
image_file file Image file to perform OCR on. Common file formats such as PNG, JPEG are supported.
recognition_mode str Optional; possible values are 'Basic' which provides basic recognition and is not resillient to page rotation, skew or low quality images uses 1-2 API calls; 'Normal' which provides highly fault tolerant OCR recognition uses 14-16 API calls; and 'Advanced' which provides the highest quality and most fault-tolerant recognition uses 28-30 API calls. Default recognition mode is 'Advanced' [optional]
language str Optional, language of the input document, default is English (ENG). Possible values are ENG (English), ARA (Arabic), ZHO (Chinese - Simplified), ZHO-HANT (Chinese - Traditional), ASM (Assamese), AFR (Afrikaans), AMH (Amharic), AZE (Azerbaijani), AZE-CYRL (Azerbaijani - Cyrillic), BEL (Belarusian), BEN (Bengali), BOD (Tibetan), BOS (Bosnian), BUL (Bulgarian), CAT (Catalan; Valencian), CEB (Cebuano), CES (Czech), CHR (Cherokee), CYM (Welsh), DAN (Danish), DEU (German), DZO (Dzongkha), ELL (Greek), ENM (Archaic/Middle English), EPO (Esperanto), EST (Estonian), EUS (Basque), FAS (Persian), FIN (Finnish), FRA (French), FRK (Frankish), FRM (Middle-French), GLE (Irish), GLG (Galician), GRC (Ancient Greek), HAT (Hatian), HEB (Hebrew), HIN (Hindi), HRV (Croatian), HUN (Hungarian), IKU (Inuktitut), IND (Indonesian), ISL (Icelandic), ITA (Italian), ITA-OLD (Old - Italian), JAV (Javanese), JPN (Japanese), KAN (Kannada), KAT (Georgian), KAT-OLD (Old-Georgian), KAZ (Kazakh), KHM (Central Khmer), KIR (Kirghiz), KOR (Korean), KUR (Kurdish), LAO (Lao), LAT (Latin), LAV (Latvian), LIT (Lithuanian), MAL (Malayalam), MAR (Marathi), MKD (Macedonian), MLT (Maltese), MSA (Malay), MYA (Burmese), NEP (Nepali), NLD (Dutch), NOR (Norwegian), ORI (Oriya), PAN (Panjabi), POL (Polish), POR (Portuguese), PUS (Pushto), RON (Romanian), RUS (Russian), SAN (Sanskrit), SIN (Sinhala), SLK (Slovak), SLV (Slovenian), SPA (Spanish), SPA-OLD (Old Spanish), SQI (Albanian), SRP (Serbian), SRP-LAT (Latin Serbian), SWA (Swahili), SWE (Swedish), SYR (Syriac), TAM (Tamil), TEL (Telugu), TGK (Tajik), TGL (Tagalog), THA (Thai), TIR (Tigrinya), TUR (Turkish), UIG (Uighur), UKR (Ukrainian), URD (Urdu), UZB (Uzbek), UZB-CYR (Cyrillic Uzbek), VIE (Vietnamese), YID (Yiddish) [optional]

Return type

ImageToTextResponse

Authorization

Apikey

HTTP request headers

  • Content-Type: multipart/form-data
  • Accept: application/json, text/json, application/xml, text/xml

[Back to top] [Back to API list] [Back to Model list] [Back to README]

image_ocr_photo_words_with_location

PhotoToWordsWithLocationResult image_ocr_photo_words_with_location(image_file, recognition_mode=recognition_mode, language=language, preprocessing=preprocessing, diagnostics=diagnostics)

Convert a photo of a document or receipt into words with location

Converts a photo of a document or receipt in common formats such as JPEG, PNG into words/text with location information and other metdata via Optical Character Recognition. This API is intended to be run on photographs of documents. If you want to OCR scanned documents (e.g. taken with a scanner), be sure to use the image/toText API instead, as it is designed for that use case.

Example

from __future__ import print_function
import time
import cloudmersive_ocr_api_client
from cloudmersive_ocr_api_client.rest import ApiException
from pprint import pprint

# Configure API key authorization: Apikey
configuration = cloudmersive_ocr_api_client.Configuration()
configuration.api_key['Apikey'] = 'YOUR_API_KEY'
# Uncomment below to setup prefix (e.g. Bearer) for API key, if needed
# configuration.api_key_prefix['Apikey'] = 'Bearer'

# create an instance of the API class
api_instance = cloudmersive_ocr_api_client.ImageOcrApi(cloudmersive_ocr_api_client.ApiClient(configuration))
image_file = '/path/to/file.txt' # file | Image file to perform OCR on.  Common file formats such as PNG, JPEG are supported.
recognition_mode = 'recognition_mode_example' # str | Optional; possible values are 'Normal' which provides highly fault tolerant OCR recognition uses 14-16 API calls; and 'Advanced' which provides the highest quality and most fault-tolerant recognition uses 28-30 API calls.  Default recognition mode is 'Advanced' (optional)
language = 'language_example' # str | Optional, language of the input document, default is English (ENG).  Possible values are ENG (English), ARA (Arabic), ZHO (Chinese - Simplified), ZHO-HANT (Chinese - Traditional), ASM (Assamese), AFR (Afrikaans), AMH (Amharic), AZE (Azerbaijani), AZE-CYRL (Azerbaijani - Cyrillic), BEL (Belarusian), BEN (Bengali), BOD (Tibetan), BOS (Bosnian), BUL (Bulgarian), CAT (Catalan; Valencian), CEB (Cebuano), CES (Czech), CHR (Cherokee), CYM (Welsh), DAN (Danish), DEU (German), DZO (Dzongkha), ELL (Greek), ENM (Archaic/Middle English), EPO (Esperanto), EST (Estonian), EUS (Basque), FAS (Persian), FIN (Finnish), FRA (French), FRK (Frankish), FRM (Middle-French), GLE (Irish), GLG (Galician), GRC (Ancient Greek), HAT (Hatian), HEB (Hebrew), HIN (Hindi), HRV (Croatian), HUN (Hungarian), IKU (Inuktitut), IND (Indonesian), ISL (Icelandic), ITA (Italian), ITA-OLD (Old - Italian), JAV (Javanese), JPN (Japanese), KAN (Kannada), KAT (Georgian), KAT-OLD (Old-Georgian), KAZ (Kazakh), KHM (Central Khmer), KIR (Kirghiz), KOR (Korean), KUR (Kurdish), LAO (Lao), LAT (Latin), LAV (Latvian), LIT (Lithuanian), MAL (Malayalam), MAR (Marathi), MKD (Macedonian), MLT (Maltese), MSA (Malay), MYA (Burmese), NEP (Nepali), NLD (Dutch), NOR (Norwegian), ORI (Oriya), PAN (Panjabi), POL (Polish), POR (Portuguese), PUS (Pushto), RON (Romanian), RUS (Russian), SAN (Sanskrit), SIN (Sinhala), SLK (Slovak), SLV (Slovenian), SPA (Spanish), SPA-OLD (Old Spanish), SQI (Albanian), SRP (Serbian), SRP-LAT (Latin Serbian), SWA (Swahili), SWE (Swedish), SYR (Syriac), TAM (Tamil), TEL (Telugu), TGK (Tajik), TGL (Tagalog), THA (Thai), TIR (Tigrinya), TUR (Turkish), UIG (Uighur), UKR (Ukrainian), URD (Urdu), UZB (Uzbek), UZB-CYR (Cyrillic Uzbek), VIE (Vietnamese), YID (Yiddish) (optional)
preprocessing = 'preprocessing_example' # str | Optional, preprocessing mode, default is 'Auto'.  Possible values are None (no preprocessing of the image), and Auto (automatic image enhancement of the image before OCR is applied; this is recommended). (optional)
diagnostics = 'diagnostics_example' # str | Optional, diagnostics mode, default is 'false'.  Possible values are 'true' (will set DiagnosticImage to a diagnostic PNG image in the result), and 'false' (no diagnostics are enabled; this is recommended for best performance). (optional)

try:
    # Convert a photo of a document or receipt into words with location
    api_response = api_instance.image_ocr_photo_words_with_location(image_file, recognition_mode=recognition_mode, language=language, preprocessing=preprocessing, diagnostics=diagnostics)
    pprint(api_response)
except ApiException as e:
    print("Exception when calling ImageOcrApi->image_ocr_photo_words_with_location: %s\n" % e)

Parameters

Name Type Description Notes
image_file file Image file to perform OCR on. Common file formats such as PNG, JPEG are supported.
recognition_mode str Optional; possible values are 'Normal' which provides highly fault tolerant OCR recognition uses 14-16 API calls; and 'Advanced' which provides the highest quality and most fault-tolerant recognition uses 28-30 API calls. Default recognition mode is 'Advanced' [optional]
language str Optional, language of the input document, default is English (ENG). Possible values are ENG (English), ARA (Arabic), ZHO (Chinese - Simplified), ZHO-HANT (Chinese - Traditional), ASM (Assamese), AFR (Afrikaans), AMH (Amharic), AZE (Azerbaijani), AZE-CYRL (Azerbaijani - Cyrillic), BEL (Belarusian), BEN (Bengali), BOD (Tibetan), BOS (Bosnian), BUL (Bulgarian), CAT (Catalan; Valencian), CEB (Cebuano), CES (Czech), CHR (Cherokee), CYM (Welsh), DAN (Danish), DEU (German), DZO (Dzongkha), ELL (Greek), ENM (Archaic/Middle English), EPO (Esperanto), EST (Estonian), EUS (Basque), FAS (Persian), FIN (Finnish), FRA (French), FRK (Frankish), FRM (Middle-French), GLE (Irish), GLG (Galician), GRC (Ancient Greek), HAT (Hatian), HEB (Hebrew), HIN (Hindi), HRV (Croatian), HUN (Hungarian), IKU (Inuktitut), IND (Indonesian), ISL (Icelandic), ITA (Italian), ITA-OLD (Old - Italian), JAV (Javanese), JPN (Japanese), KAN (Kannada), KAT (Georgian), KAT-OLD (Old-Georgian), KAZ (Kazakh), KHM (Central Khmer), KIR (Kirghiz), KOR (Korean), KUR (Kurdish), LAO (Lao), LAT (Latin), LAV (Latvian), LIT (Lithuanian), MAL (Malayalam), MAR (Marathi), MKD (Macedonian), MLT (Maltese), MSA (Malay), MYA (Burmese), NEP (Nepali), NLD (Dutch), NOR (Norwegian), ORI (Oriya), PAN (Panjabi), POL (Polish), POR (Portuguese), PUS (Pushto), RON (Romanian), RUS (Russian), SAN (Sanskrit), SIN (Sinhala), SLK (Slovak), SLV (Slovenian), SPA (Spanish), SPA-OLD (Old Spanish), SQI (Albanian), SRP (Serbian), SRP-LAT (Latin Serbian), SWA (Swahili), SWE (Swedish), SYR (Syriac), TAM (Tamil), TEL (Telugu), TGK (Tajik), TGL (Tagalog), THA (Thai), TIR (Tigrinya), TUR (Turkish), UIG (Uighur), UKR (Ukrainian), URD (Urdu), UZB (Uzbek), UZB-CYR (Cyrillic Uzbek), VIE (Vietnamese), YID (Yiddish) [optional]
preprocessing str Optional, preprocessing mode, default is 'Auto'. Possible values are None (no preprocessing of the image), and Auto (automatic image enhancement of the image before OCR is applied; this is recommended). [optional]
diagnostics str Optional, diagnostics mode, default is 'false'. Possible values are 'true' (will set DiagnosticImage to a diagnostic PNG image in the result), and 'false' (no diagnostics are enabled; this is recommended for best performance). [optional]

Return type

PhotoToWordsWithLocationResult

Authorization

Apikey

HTTP request headers

  • Content-Type: multipart/form-data
  • Accept: application/json, text/json, application/xml, text/xml

[Back to top] [Back to API list] [Back to Model list] [Back to README]

image_ocr_post

ImageToTextResponse image_ocr_post(image_file, recognition_mode=recognition_mode, language=language, preprocessing=preprocessing)

Convert a scanned image into text

Converts an uploaded image in common formats such as JPEG, PNG into text via Optical Character Recognition. This API is intended to be run on scanned documents. If you want to OCR photos (e.g. taken with a smart phone camera), be sure to use the photo/toText API instead, as it is designed to unskew the image first.

Example

from __future__ import print_function
import time
import cloudmersive_ocr_api_client
from cloudmersive_ocr_api_client.rest import ApiException
from pprint import pprint

# Configure API key authorization: Apikey
configuration = cloudmersive_ocr_api_client.Configuration()
configuration.api_key['Apikey'] = 'YOUR_API_KEY'
# Uncomment below to setup prefix (e.g. Bearer) for API key, if needed
# configuration.api_key_prefix['Apikey'] = 'Bearer'

# create an instance of the API class
api_instance = cloudmersive_ocr_api_client.ImageOcrApi(cloudmersive_ocr_api_client.ApiClient(configuration))
image_file = '/path/to/file.txt' # file | Image file to perform OCR on.  Common file formats such as PNG, JPEG are supported.
recognition_mode = 'recognition_mode_example' # str | Optional; possible values are 'Basic' which provides basic recognition and is not resillient to page rotation, skew or low quality images uses 1-2 API calls; 'Normal' which provides highly fault tolerant OCR recognition uses 14-16 API calls; and 'Advanced' which provides the highest quality and most fault-tolerant recognition uses 28-30 API calls.  Default recognition mode is 'Advanced' (optional)
language = 'language_example' # str | Optional, language of the input document, default is English (ENG).  Possible values are ENG (English), ARA (Arabic), ZHO (Chinese - Simplified), ZHO-HANT (Chinese - Traditional), ASM (Assamese), AFR (Afrikaans), AMH (Amharic), AZE (Azerbaijani), AZE-CYRL (Azerbaijani - Cyrillic), BEL (Belarusian), BEN (Bengali), BOD (Tibetan), BOS (Bosnian), BUL (Bulgarian), CAT (Catalan; Valencian), CEB (Cebuano), CES (Czech), CHR (Cherokee), CYM (Welsh), DAN (Danish), DEU (German), DZO (Dzongkha), ELL (Greek), ENM (Archaic/Middle English), EPO (Esperanto), EST (Estonian), EUS (Basque), FAS (Persian), FIN (Finnish), FRA (French), FRK (Frankish), FRM (Middle-French), GLE (Irish), GLG (Galician), GRC (Ancient Greek), HAT (Hatian), HEB (Hebrew), HIN (Hindi), HRV (Croatian), HUN (Hungarian), IKU (Inuktitut), IND (Indonesian), ISL (Icelandic), ITA (Italian), ITA-OLD (Old - Italian), JAV (Javanese), JPN (Japanese), KAN (Kannada), KAT (Georgian), KAT-OLD (Old-Georgian), KAZ (Kazakh), KHM (Central Khmer), KIR (Kirghiz), KOR (Korean), KUR (Kurdish), LAO (Lao), LAT (Latin), LAV (Latvian), LIT (Lithuanian), MAL (Malayalam), MAR (Marathi), MKD (Macedonian), MLT (Maltese), MSA (Malay), MYA (Burmese), NEP (Nepali), NLD (Dutch), NOR (Norwegian), ORI (Oriya), PAN (Panjabi), POL (Polish), POR (Portuguese), PUS (Pushto), RON (Romanian), RUS (Russian), SAN (Sanskrit), SIN (Sinhala), SLK (Slovak), SLV (Slovenian), SPA (Spanish), SPA-OLD (Old Spanish), SQI (Albanian), SRP (Serbian), SRP-LAT (Latin Serbian), SWA (Swahili), SWE (Swedish), SYR (Syriac), TAM (Tamil), TEL (Telugu), TGK (Tajik), TGL (Tagalog), THA (Thai), TIR (Tigrinya), TUR (Turkish), UIG (Uighur), UKR (Ukrainian), URD (Urdu), UZB (Uzbek), UZB-CYR (Cyrillic Uzbek), VIE (Vietnamese), YID (Yiddish) (optional)
preprocessing = 'preprocessing_example' # str | Optional, preprocessing mode, default is 'Auto'.  Possible values are None (no preprocessing of the image), and Auto (automatic image enhancement of the image before OCR is applied; this is recommended). (optional)

try:
    # Convert a scanned image into text
    api_response = api_instance.image_ocr_post(image_file, recognition_mode=recognition_mode, language=language, preprocessing=preprocessing)
    pprint(api_response)
except ApiException as e:
    print("Exception when calling ImageOcrApi->image_ocr_post: %s\n" % e)

Parameters

Name Type Description Notes
image_file file Image file to perform OCR on. Common file formats such as PNG, JPEG are supported.
recognition_mode str Optional; possible values are 'Basic' which provides basic recognition and is not resillient to page rotation, skew or low quality images uses 1-2 API calls; 'Normal' which provides highly fault tolerant OCR recognition uses 14-16 API calls; and 'Advanced' which provides the highest quality and most fault-tolerant recognition uses 28-30 API calls. Default recognition mode is 'Advanced' [optional]
language str Optional, language of the input document, default is English (ENG). Possible values are ENG (English), ARA (Arabic), ZHO (Chinese - Simplified), ZHO-HANT (Chinese - Traditional), ASM (Assamese), AFR (Afrikaans), AMH (Amharic), AZE (Azerbaijani), AZE-CYRL (Azerbaijani - Cyrillic), BEL (Belarusian), BEN (Bengali), BOD (Tibetan), BOS (Bosnian), BUL (Bulgarian), CAT (Catalan; Valencian), CEB (Cebuano), CES (Czech), CHR (Cherokee), CYM (Welsh), DAN (Danish), DEU (German), DZO (Dzongkha), ELL (Greek), ENM (Archaic/Middle English), EPO (Esperanto), EST (Estonian), EUS (Basque), FAS (Persian), FIN (Finnish), FRA (French), FRK (Frankish), FRM (Middle-French), GLE (Irish), GLG (Galician), GRC (Ancient Greek), HAT (Hatian), HEB (Hebrew), HIN (Hindi), HRV (Croatian), HUN (Hungarian), IKU (Inuktitut), IND (Indonesian), ISL (Icelandic), ITA (Italian), ITA-OLD (Old - Italian), JAV (Javanese), JPN (Japanese), KAN (Kannada), KAT (Georgian), KAT-OLD (Old-Georgian), KAZ (Kazakh), KHM (Central Khmer), KIR (Kirghiz), KOR (Korean), KUR (Kurdish), LAO (Lao), LAT (Latin), LAV (Latvian), LIT (Lithuanian), MAL (Malayalam), MAR (Marathi), MKD (Macedonian), MLT (Maltese), MSA (Malay), MYA (Burmese), NEP (Nepali), NLD (Dutch), NOR (Norwegian), ORI (Oriya), PAN (Panjabi), POL (Polish), POR (Portuguese), PUS (Pushto), RON (Romanian), RUS (Russian), SAN (Sanskrit), SIN (Sinhala), SLK (Slovak), SLV (Slovenian), SPA (Spanish), SPA-OLD (Old Spanish), SQI (Albanian), SRP (Serbian), SRP-LAT (Latin Serbian), SWA (Swahili), SWE (Swedish), SYR (Syriac), TAM (Tamil), TEL (Telugu), TGK (Tajik), TGL (Tagalog), THA (Thai), TIR (Tigrinya), TUR (Turkish), UIG (Uighur), UKR (Ukrainian), URD (Urdu), UZB (Uzbek), UZB-CYR (Cyrillic Uzbek), VIE (Vietnamese), YID (Yiddish) [optional]
preprocessing str Optional, preprocessing mode, default is 'Auto'. Possible values are None (no preprocessing of the image), and Auto (automatic image enhancement of the image before OCR is applied; this is recommended). [optional]

Return type

ImageToTextResponse

Authorization

Apikey

HTTP request headers

  • Content-Type: multipart/form-data
  • Accept: application/json, text/json, application/xml, text/xml

[Back to top] [Back to API list] [Back to Model list] [Back to README]