The HotellingEllipse
package offers a comprehensive set of functions
that help visualizing multivariate data through Hotelling’s T-squared
ellipses. At its core, the package calculates the crucial parameters
needed for Hotelling’s T-squared ellipse representation: the lengths of
both the semi-minor and semi-major axes. These calculations are
performed for two confidence intervals, 95% and 99%.
HotellingEllipse
extends its functionality to provide coordinate
points for plotting these ellipses. Users have the flexibility to
generate either two-dimensional or three-dimensional coordinates,
enabling the creation of both planar ellipses and spatial ellipsoids.
While it offers pre-calculated results for common confidence intervals,
it also allows users to specify custom confidence levels. For more
features, please see the package vignette.
Install HotellingEllipse
from CRAN:
install.packages("HotellingEllipse")
Install the development version from GitHub:
# install.packages("remotes")
remotes::install_github("ChristianGoueguel/HotellingEllipse")
This section provides a comprehensive step-by-step tutorial on how to
use the HotellingEllipse
package. This guide will walk you through the
entire process, from data preparation to final visualization.
-
using
FactoMineR::PCA()
we first perform Principal Component Analysis (PCA) from a LIBS spectral datasetdata("specData")
and extract the PCA scores. -
with
ellipseParam()
we get the Hotelling’s T-squared statistic along with the values of the semi-minor and semi-major axes. Whereas,ellipseCoord()
provides the coordinates for drawing the Hotelling ellipse at user-defined confidence interval. -
using
ggplot2::ggplot()
andggforce::geom_ellipse()
we plot the scatterplot of PCA scores as well as the corresponding Hotelling’s T-squared ellipse which represents the confidence region for the joint variables at 99% and 95% confidence intervals.
Step 1. Load the package.
library(HotellingEllipse)
Step 2. Load LIBS dataset.
data("specData", package = "HotellingEllipse")
Step 3. Perform principal component analysis.
set.seed(123)
pca_mod <- specData %>%
select(where(is.numeric)) %>%
PCA(scale.unit = FALSE, graph = FALSE)
Step 4. Extract PCA scores.
pca_scores <- pca_mod %>%
pluck("ind", "coord") %>%
as_tibble() %>%
print()
#> # A tibble: 100 × 5
#> Dim.1 Dim.2 Dim.3 Dim.4 Dim.5
#> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 25306. -10831. -1851. -83.4 -560.
#> 2 -67.3 1137. -2946. 2495. -568.
#> 3 -1822. -22.0 -2305. 1640. -409.
#> 4 -1238. 3734. 4039. -2428. 379.
#> 5 3299. 4727. -888. -1089. 262.
#> 6 5006. -49.5 2534. 1917. -970.
#> 7 -8325. -5607. 960. -3361. 103.
#> 8 -4955. -1056. 2510. -397. -354.
#> 9 -1610. 1271. -2556. 2268. -760.
#> 10 19582. 2289. 886. -843. 1483.
#> # ℹ 90 more rows
Step 5. Run ellipseParam()
for the first two principal components
(k = 2). We want to compute the length of the semi-axes of the
Hotelling ellipse (denoted a and b) when the first principal
component, PC1, is on the x-axis (pcx = 1) and, the second
principal component, PC2, is on the y-axis (pcy = 2).
res_2PCs <- ellipseParam(pca_scores, k = 2, pcx = 1, pcy = 2)
str(res_2PCs)
#> List of 5
#> $ Tsquare : tibble [100 × 1] (S3: tbl_df/tbl/data.frame)
#> ..$ value: num [1:100] 13.0984 0.0536 0.0428 0.5969 1.0649 ...
#> $ cutoff.99pct: num 9.76
#> $ cutoff.95pct: num 6.24
#> $ nb.comp : num 2
#> $ Ellipse : tibble [1 × 4] (S3: tbl_df/tbl/data.frame)
#> ..$ a.99pct: num 19369
#> ..$ b.99pct: num 10800
#> ..$ a.95pct: num 15492
#> ..$ b.95pct: num 8639
- Semi-axes of the ellipse at 99% confidence level.
a1 <- pluck(res_2PCs, "Ellipse", "a.99pct")
b1 <- pluck(res_2PCs, "Ellipse", "b.99pct")
- Semi-axes of the ellipse at 95% confidence level.
a2 <- pluck(res_2PCs, "Ellipse", "a.95pct")
b2 <- pluck(res_2PCs, "Ellipse", "b.95pct")
- Hotelling’s T-squared.
T2 <- pluck(res_2PCs, "Tsquare", "value")
Another way to add Hotelling ellipse on the scatterplot of the scores is
to use the function ellipseCoord()
. This function provides the x and
y coordinates of the confidence ellipse at user-defined confidence
interval. The confidence interval conf.limit
is set at 95% by default.
Here, PC1 is on the x-axis (pcx = 1) and, the third principal
component, PC3, is on the y-axis (pcy = 3).
coord_2PCs_99 <- ellipseCoord(pca_scores, pcx = 1, pcy = 3, conf.limit = 0.99, pts = 500)
coord_2PCs_95 <- ellipseCoord(pca_scores, pcx = 1, pcy = 3, conf.limit = 0.95, pts = 500)
coord_2PCs_90 <- ellipseCoord(pca_scores, pcx = 1, pcy = 3, conf.limit = 0.90, pts = 500)
str(coord_2PCs_99)
#> tibble [500 × 2] (S3: tbl_df/tbl/data.frame)
#> $ x: num [1:500] 19369 19367 19363 19355 19344 ...
#> $ y: num [1:500] -5.30e-13 1.06e+02 2.12e+02 3.18e+02 4.24e+02 ...
Step 6. Plot PC1 vs. PC2 scatterplot, with the two corresponding Hotelling ellipse. Points inside the two elliptical regions are within the 99% and 95% confidence intervals for the Hotelling’s T-squared.
t1 <- round(as.numeric(pca_mod$eig[1,2]), 2)
t2 <- round(as.numeric(pca_mod$eig[2,2]), 2)
t3 <- round(as.numeric(pca_mod$eig[3,2]), 2)
pca_scores %>%
ggplot(aes(x = Dim.1, y = Dim.2)) +
geom_ellipse(aes(x0 = 0, y0 = 0, a = a1, b = b1, angle = 0), linewidth = .5, linetype = "solid", fill = "white") +
geom_ellipse(aes(x0 = 0, y0 = 0, a = a2, b = b2, angle = 0), linewidth = .5, linetype = "solid", fill = "white") +
geom_point(aes(fill = T2), shape = 21, size = 3, color = "black") +
scale_fill_viridis_c(option = "viridis") +
geom_hline(yintercept = 0, linetype = "solid", color = "black", linewidth = .2) +
geom_vline(xintercept = 0, linetype = "solid", color = "black", linewidth = .2) +
labs(title = "Scatterplot of PCA scores", subtitle = "PC1 vs. PC2", x = glue("PC1 [{t1}%]"), y = glue("PC2 [{t2}%]"), fill = "T2", caption = "Figure 1: Hotelling’s T2 ellipse obtained\n using the ellipseParam function") +
theme_grey() +
theme(
aspect.ratio = .7,
panel.grid = element_blank(),
panel.background = element_rect(
colour = "black",
linewidth = .3
)
)
Or in the PC1-PC3 subspace at the confidence intervals set at 99, 95 and 90%.
ggplot() +
geom_polygon(data = coord_2PCs_99, aes(x, y), color = "black", fill = "white") +
geom_path(data = coord_2PCs_95, aes(x, y), color = "darkred") +
geom_path(data = coord_2PCs_90, aes(x, y), color = "darkblue") +
geom_point(data = pca_scores, aes(x = Dim.1, y = Dim.3, fill = T2), shape = 21, size = 3, color = "black") +
scale_fill_viridis_c(option = "viridis") +
geom_hline(yintercept = 0, linetype = "solid", color = "black", linewidth = .2) +
geom_vline(xintercept = 0, linetype = "solid", color = "black", linewidth = .2) +
labs(title = "Scatterplot of PCA scores", subtitle = "PC1 vs. PC3", x = glue("PC1 [{t1}%]"), y = glue("PC3 [{t3}%]"), fill = "T2", caption = "Figure 2: Hotelling’s T2 ellipse obtained\n using the ellipseCoord function") +
theme_grey() +
theme(
aspect.ratio = .7,
panel.grid = element_blank(),
panel.background = element_rect(
colour = "black",
linewidth = .3
)
)
Note 1: Hotelling’s T-squared Ellipsoid - Visualizing Multivariate Data in 3D Space.
The ellipseCoord
function has an optional parameter pcz
, which is
set to NULL
by default. When specified, this parameter enables the
computation of coordinates for Hotelling’s T-squared ellipsoid in
three-dimensional space. In the example below, the 1st, 2nd, and 3rd
components are mapped to the x, y, and z-axis, respectively. The
resulting ellipsoid serves as a three-dimensional confidence region,
encompassing a specified proportion of the data points based on the
chosen confidence level.
df_ellipsoid <- ellipseCoord(pca_scores, pcx = 1, pcy = 2, pcz = 3, pts = 50)
str(df_ellipsoid)
#> tibble [2,500 × 3] (S3: tbl_df/tbl/data.frame)
#> $ x: num [1:2500] -2.32e-13 -2.32e-13 -2.32e-13 -2.32e-13 -2.32e-13 ...
#> $ y: num [1:2500] 6.93e-13 6.93e-13 6.93e-13 6.93e-13 6.93e-13 ...
#> $ z: num [1:2500] 7745 7745 7745 7745 7745 ...
T2 <- ellipseParam(pca_scores, k = 3)$Tsquare$value
color_palette <- viridisLite::viridis(nrow(pca_scores))
scaled_T2 <- scales::rescale(T2, to = c(1, nrow(pca_scores)))
point_colors <- color_palette[round(scaled_T2)]
rgl::setupKnitr(autoprint = TRUE)
rgl::plot3d(
x = df_ellipsoid$x,
y = df_ellipsoid$y,
z = df_ellipsoid$z,
xlab = "PC1",
ylab = "PC2",
zlab = "PC3",
type = "l",
lwd = 0.5,
col = "lightgray",
alpha = 0.5)
rgl::points3d(
x = pca_scores$Dim.1,
y = pca_scores$Dim.2,
z = pca_scores$Dim.3,
col = point_colors,
size = 5,
add = TRUE)
rgl::bgplot3d({
par(mar = c(0,0,0,0))
plot.new()
color_legend <- as.raster(matrix(rev(color_palette), ncol = 1))
rasterImage(color_legend, 0.85, 0.1, 0.9, 0.9)
text(
x = 0.92,
y = seq(0.1, 0.9, length.out = 5),
labels = round(seq(min(T2), max(T2), length.out = 5), 2),
cex = 0.7)
text(x = 0.92, y = 0.95, labels = "T2", cex = 0.8)})
rgl::view3d(theta = 30, phi = 25, zoom = .8)
Note 2: Analysis of Hotelling’s T-squared Using Multiple Components.
When dealing with more than two principal components, visualizing Hotelling’s T-squared becomes challenging in traditional 2D or 3D plots. A more effective approach for analyzing and interpreting this multivariate statistic involves plotting Hotelling’s T-squared against Observations, where the confidence limits are plotted as a line. Thus, observations below the two lines are within the Hotelling’s T-squared limits.
In the provided example, we utilize the ellipseParam()
function with a
cumulative variance threshold of 0.95 (threshold = 0.95
). This setting
ensures that the analysis captures 95% of the total variance in the
data.
df <- ellipseParam(pca_scores, threshold = 0.95)
str(df)
#> List of 4
#> $ Tsquare : tibble [100 × 1] (S3: tbl_df/tbl/data.frame)
#> ..$ value: num [1:100] 6.53 0.78 0.399 1.276 0.636 ...
#> $ cutoff.99pct: num 14.5
#> $ cutoff.95pct: num 10.2
#> $ nb.comp : num 4
tibble(
T2 = pluck(df, "Tsquare", "value"),
obs = 1:nrow(pca_scores)
) %>%
ggplot() +
geom_point(aes(x = obs, y = T2, fill = T2), shape = 21, size = 3, color = "black") +
geom_segment(aes(x = obs, y = T2, xend = obs, yend = 0), linewidth = .5) +
scale_fill_gradient(low = "black", high = "red", guide = "none") +
geom_hline(yintercept = pluck(df, "cutoff.99pct"), linetype = "dashed", color = "darkred", linewidth = .5) +
geom_hline(yintercept = pluck(df, "cutoff.95pct"), linetype = "dashed", color = "darkblue", linewidth = .5) +
annotate("text", x = 80, y = 13, label = "99% limit", color = "darkred") +
annotate("text", x = 80, y = 9, label = "95% limit", color = "darkblue") +
labs(x = "Observations", y = "Hotelling’s T-squared (4 PCs)", fill = "T2 stats", caption = "Figure 4: Hotelling’s T-squared vs. Observations") +
theme_bw()