Global Overcomplete Dictionary-Based Sparse and Nonnegative Collaborative Representation for Hyperspectral Target Detection (GODSNCR), IEEE TGRS, 2024.
This is the initial version of the guideline and will be updated
- Run HDBSCAN.py to get the purified and unpurified background dictionaries
- Run GODSNCR.m to get the final detection result.
REFERENCE DATA: AVIRIS_100_100_189.mat
@ARTICLE{10478971,
author={Li, Chenxing and Zhu, Dehui and Wu, Chen and Du, Bo and Zhang, Liangpei},
journal={IEEE Transactions on Geoscience and Remote Sensing},
title={Global Overcomplete Dictionary-Based Sparse and Nonnegative Collaborative Representation for Hyperspectral Target Detection},
year={2024},
volume={62},
number={},
pages={1-14},
keywords={Dictionaries;Hyperspectral imaging;Object detection;Collaboration;Detectors;Sparse approximation;Feature extraction;Collaborative representation;hyperspectral imagery (HSI);sparse representation;target detection},
doi={10.1109/TGRS.2024.3381719}}