Reproduction of PoRF and use it on lab`s digital theater
The data will be organized as follows:
porf_data
|---dtu
|---<case_name>
|-- cameras.npz # GT camera parameters
|-- cameras_colmap.npz # COLMAP camera parameters
|-- image
|-- 000.png # target image for each view filled by Colmap
|-- 001.png
...
|-- images
|-- 000.png # all image for each view
|-- 001.png
...
|-- colmap_matches
|-- 000000.npz # matches exported from COLMAP
|-- 000001.npz
...
|-- sparse_points.ply # ply file create by img2poses.py
|-- sparse_points_interest.ply # ply file modified to remove noise
|-- database.db # database file create by COLMAP
...
exp_dtu
|---<case_name>
|-- dtu_sift_porf
|-- meshes
|-- 00xxxxxx.ply # target ply file trained by PoRF
...
git clone https://github.com/Cerosop/Reproduction_of_PoRF.git
cd porf
conda create -n porf_reproduction python=3.9
conda activate porf_reproduction
conda install pytorch==1.13.1 torchvision==0.14.1 pytorch-cuda=11.7 -c pytorch -c nvidia
pip install -r requirements.txt
python surface.py
Some code snippets are borrowed from PoRF. Thanks for these great projects.