Skip to content

Run Scheduled Events Docker #169

Run Scheduled Events Docker

Run Scheduled Events Docker #169

name: Run Scheduled Events Docker
permissions:
actions: write
contents: write
issues: write
pull-requests: write
on:
workflow_dispatch:
schedule:
- cron: '0 0 10 * *'
jobs:
run-scheduled-events:
uses: Cemberk/fork-maintenance-system/.github/workflows/fork-maintenance-action.yml@artifacts
with:
platform: 'gfx90a'
upstream_repo: 'https://github.com/huggingface/transformers'
pr_branch_prefix: 'scheduled-merge'
requirements_command: |
rm -rf $(pip show numpy | grep Location: | awk '{print $2}')/numpy* &&
sudo sed -i 's/torchaudio//g' examples/pytorch/_tests_requirements.txt &&
pip install -r examples/pytorch/_tests_requirements.txt &&
git restore examples/pytorch/_tests_requirements.txt &&
pip install --no-cache-dir GPUtil azureml azureml-core tokenizers ninja cerberus sympy sacremoses sacrebleu==1.5.1 sentencepiece scipy scikit-learn urllib3 && pip install huggingface_hub datasets &&
pip install parameterized &&
pip install -e .
#unit_test_command: cd tests; folders=$$(python3 -c 'import os; tests = os.getcwd(); models = "models"; model_tests = os.listdir(os.path.join(tests, models)); d1 = sorted(list(filter(os.path.isdir, os.listdir(tests)))); d2 = sorted(list(filter(os.path.isdir, [os.path.join(models, x) for x in model_tests]))); d1.remove(models); d = d2 + d1; print(" ".join(d[:5]))'); cd ..; for folder in \${folders[@]}; do pytest tests/\${folder} -v --make-reports=huggingface_unit_tests_\${machine_type}_run_models_gpu_\${folder} -rfEs --continue-on-collection-errors -m \"not not_device_test\" -p no:cacheprovider; done; allstats=\$(find reports -name stats.txt); for stat in \${allstats[@]}; do echo \$stat; cat \$stat; done
unit_test_command: folders=\$(python3 -c 'import os; print(\"hello\")'); echo \$folders; pwd; ls; exit 1;
#cd tests; folders=\$(python3 -c \import os; tests = os.getcwd(); models = \"models\"; model_tests = os.listdir(os.path.join(tests, models)); d1 = sorted(list(filter(os.path.isdir, os.listdir(tests)))); d2 = sorted(list(filter(os.path.isdir, [os.path.join(models, x) for x in model_tests]))); d1.remove(models); d = d2 + d1; print(\" \".join(d[:5]))' ); cd ..; for folder in \${folders[@]}; do pytest tests/\${folder} -v --make-reports=huggingface_unit_tests_\${machine_type}_run_models_gpu_\${folder} -rfEs --continue-on-collection-errors -m \"not not_device_test\" -p no:cacheprovider; done; allstats=\$(find reports -name stats.txt); for stat in \${allstats[@]}; do echo \$stat; cat \$stat; done
#unit_test_command: cd tests; pwd; ls; folders=$(python3 -c 'import os; tests = os.getcwd(); repo_root = os.path.dirname(tests); models_dir = os.path.join(repo_root, "models"); import sys; sys.path.append(repo_root); model_tests = os.listdir(models_dir); d1 = sorted([d for d in os.listdir(tests) if os.path.isdir(os.path.join(tests, d)) and d != "models"]); d2 = sorted([os.path.join("models", x) for x in model_tests if os.path.isdir(os.path.join(models_dir, x))]); d = d2 + d1; print(" ".join(d[:5]))'); cd ..; for folder in ${folders[@]}; do pytest tests/${folder} -v --make-reports=huggingface_unit_tests_${machine_type}_run_models_gpu_${folder} -rfEs --continue-on-collection-errors -m "not not_device_test" -p no:cacheprovider; done; allstats=$(find reports -name stats.txt); for stat in ${allstats[@]}; do echo $stat; cat $stat; done
# unit_test_command: |
# set -x # Enable shell debugging
# echo "Running unit tests inside Docker..."
# echo "Current directory before changing to tests: $$(pwd)"
# cd tests || { echo "Failed to change directory to 'tests'"; exit 1; }
# echo "Current directory after changing to tests: $$(pwd)"
# Write Python code to a temporary script
# Write Python code to a temporary script
# cat << 'EOF' > get_folders.py
# import os
# tests = os.getcwd()
# models = "models"
# Debug: Print current working directory
# print(f"Current working directory: {tests}")
# Get list of model tests
# model_tests_path = os.path.join(tests, models)
# if not os.path.exists(model_tests_path):
# print(f"Models path does not exist: {model_tests_path}")
# exit(1)
# model_tests = os.listdir(model_tests_path)
# Debug: Print model tests
# print(f"Model tests: {model_tests}")
# d1 = sorted([d for d in os.listdir(tests) if os.path.isdir(os.path.join(tests, d))])
# d2 = sorted([d for d in model_tests if os.path.isdir(os.path.join(models, d))])
# Debug: Print directories
# print(f"d1 directories: {d1}")
# print(f"d2 directories: {d2}")
# if models in d1:
# d1.remove(models)
# d = d2 + d1
# Debug: Print combined directory list
# print(f"Combined directories (d): {d}")
# Print the first 5 directories
#print(" ".join(d[:5]))
#EOF
# echo "Contents of get_folders.py:"
# cat get_folders.py
# Execute the Python script and capture the output and errors
# folders=$(python3 get_folders.py 2>&1)
# exit_code=$?
# Optionally, you can print the output and exit code for debugging
# echo "Folders Output:"
# echo "$folders"
# echo "Exit Code: $exit_code"
# echo "Python script exit code: $exit_code"
# echo "Output from get_folders.py:"
# echo "$folders"
# if [ "$exit_code" -ne 0 ]; then
# echo "Python script failed with exit code $exit_code"
# exit $exit_code
# fi
# cd ..
# Convert folders string into an array
# IFS=' ' read -r -a folder_array <<< "$folders"
# echo "Folders obtained as array:"
# printf "'%s'\n" "${folder_array[@]}"
# if [ "${#folder_array[@]}" -eq 0 ]; then
# echo "No folders found to run tests on."
# exit 1
# fi
# Iterate over each folder and run pytest
# for folder in "${folder_array[@]}"; do
# echo "Running pytest on folder: $folder"
# pytest tests/$folder -v \
# --make-reports=huggingface_unit_tests_${machine_type}_run_models_gpu_$folder \
# -rfEs --continue-on-collection-errors \
# -m "not not_device_test" -p no:cacheprovider
# done
# Find and display stats
# allstats=$(find reports -name stats.txt)
# echo "All stats files found:"
# echo "$allstats"
# for stat in $$allstats; do
# echo "Stat file: $$stat"
# cat "$$stat"
# done
performance_test_command: 'echo \"python examples/pytorch/language-modeling/run_mlm.py --model_name_or_path bert-base-uncased --dataset_name wikitext --dataset_config_name wikitext-2-raw-v1 --do_train --do_eval --output_dir /tmp/test-mlm --per_device_train_batch_size 8 --per_device_eval_batch_size 8 --max_steps 500\"'
docker_image: 'rocm/pytorch:latest'
docker_options: '--device=/dev/kfd --device=/dev/dri --group-add video --shm-size 16G --network=host'
secrets:
GIT_TOKEN: ${{ secrets.CRED_TOKEN }}
schedule_json: ${{ secrets.SCHEDULE_CONFIG }}