This is an open source library for CNN-based face detection in images. The CNN model has been converted to static variables in C source files. The source code does not depend on any other libraries. What you need is just a C++ compiler. You can compile the source code under Windows, Linux, ARM and any platform with a C++ compiler.
SIMD instructions are used to speed up the detection. You can enable AVX2 if you use Intel CPU or NEON for ARM.
The model file has also been provided in directory ./models/.
examples/libfacedetectcnn-example.cpp shows how to use the library.
- Please add -O3 to turn on optimizations when you compile the source code using g++.
- Please choose 'Maximize Speed/-O2' when you compile the source code using Microsoft Visual Studio.
Create a build folder:
mkdir build; cd build; rm -rf *
- set cross compiler for aarch64 (please refer to aarch64-toolchain.cmake)
- set opencv path since the example code depends on opencv
cmake \
-DENABLE_INT8=ON \
-DENABLE_NEON=ON \
-DCMAKE_BUILD_TYPE=RELEASE \
-DCMAKE_TOOLCHAIN_FILE=../aarch64-toolchain.cmake \
..
make
cmake \
-DENABLE_INT8=ON \
-DENABLE_AVX2=ON \
-DCMAKE_BUILD_TYPE=RELEASE \
-DDEMO=ON \
..
make
Method | Time | FPS | Time | FPS |
---|---|---|---|---|
X64 | X64 | X64 | X64 | |
Single-thread | Single-thread | Multi-thread | Multi-thread | |
OpenCV Haar+AdaBoost (640x480) | -- | -- | 12.33ms | 81.1 |
cnn (CPU, 640x480) | 64.21ms | 15.57 | 15.59ms | 64.16 |
cnn (CPU, 320x240) | 15.23ms | 65.68 | 3.99ms | 250.40 |
cnn (CPU, 160x120) | 3.47ms | 288.08 | 0.95ms | 1052.20 |
cnn (CPU, 128x96) | 2.35ms | 425.95 | 0.64ms | 1562.10 |
- OpenCV Haar+AdaBoost runs with minimal face size 48x48
- Face detection only, and no landmark detection included.
- Minimal face size ~12x12
- Intel(R) Core(TM) i7-7700 CPU @ 3.6GHz.
Method | Time | FPS | Time | FPS |
---|---|---|---|---|
Single-thread | Single-thread | Multi-thread | Multi-thread | |
cnn (CPU, 640x480) | 512.04ms | 1.95 | 174.89ms | 5.72 |
cnn (CPU, 320x240) | 123.47ms | 8.10 | 42.13ms | 23.74 |
cnn (CPU, 160x120) | 27.42ms | 36.47 | 9.75ms | 102.58 |
cnn (CPU, 128x96) | 17.78ms | 56.24 | 6.12ms | 163.50 |
- Face detection only, and no landmark detection included.
- Minimal face size ~12x12
- Raspberry Pi 3 B+, Broadcom BCM2837B0, Cortex-A53 (ARMv8) 64-bit SoC @ 1.4GHz
- Shiqi Yu, [email protected]
- Jia Wu
- Shengyin Wu
- Dong Xu
The work is partly supported by the Science Foundation of Shenzhen (Grant No. JCYJ20150324141711699).