Skip to content

[CVPR2023] Lite-Mono: A Lightweight CNN and Transformer Architecture for Self-Supervised Monocular Depth Estimation

License

Notifications You must be signed in to change notification settings

Byeongjun1022/Lite-Mono

 
 

Repository files navigation

Lite-Mono

A Lightweight CNN and Transformer Architecture for Self-Supervised Monocular Depth Estimation [paper link]

Ning Zhang*, Francesco Nex, George Vosselman, Norman Kerle

License: MIT teaser

(Lite-Mono-8m 1024x320)

Table of Contents

Overview

overview

Results

KITTI

You can download the trained models using the links below.

--model Params ImageNet Pretrained Input size Abs Rel Sq Rel RMSE RMSE log delta < 1.25 delta < 1.25^2 delta < 1.25^3
lite-mono 3.1M yes 640x192 0.107 0.765 4.561 0.183 0.886 0.963 0.983
lite-mono-small 2.5M yes 640x192 0.110 0.802 4.671 0.186 0.879 0.961 0.982
lite-mono-tiny 2.2M yes 640x192 0.110 0.837 4.710 0.187 0.880 0.960 0.982
lite-mono-8m 8.7M yes 640x192 0.101 0.729 4.454 0.178 0.897 0.965 0.983
lite-mono 3.1M yes 1024x320 0.102 0.746 4.444 0.179 0.896 0.965 0.983
lite-mono-small 2.5M yes 1024x320 0.103 0.757 4.449 0.180 0.894 0.964 0.983
lite-mono-tiny 2.2M yes 1024x320 0.104 0.764 4.487 0.180 0.892 0.964 0.983
lite-mono-8m 8.7M yes 1024x320 0.097 0.710 4.309 0.174 0.905 0.967 0.984

Speed Evaluation

speed evaluation

Robustness

robustness

The RoboDepth Challenge Team is evaluating the robustness of different depth estimation algorithms. Lite-Mono has achieved the best robustness to date.

Data Preparation

Please refer to Monodepth2 to prepare your KITTI data.

Single Image Test

python test_simple.py --load_weights_folder path/to/your/weights/folder --image_path path/to/your/test/image

Evaluation

python evaluate_depth.py --load_weights_folder path/to/your/weights/folder --data_path path/to/kitti_data/ --model lite-mono

Training

dependency installation

pip install 'git+https://github.com/saadnaeem-dev/pytorch-linear-warmup-cosine-annealing-warm-restarts-weight-decay'

start training

python train.py --data_path path/to/your/data --model_name mytrain --batch_size 12 --mypretrain path/to/your/pretrained/weights

tensorboard visualization

tensorboard --log_dir ./tmp/mytrain

Citation

@article{zhang2022lite,
title={Lite-Mono: A Lightweight CNN and Transformer Architecture for Self-Supervised Monocular Depth Estimation},
author={Zhang, Ning and Nex, Francesco and Vosselman, George and Kerle, Norman},
journal={arXiv preprint arXiv:2211.13202},
year={2022}
}

About

[CVPR2023] Lite-Mono: A Lightweight CNN and Transformer Architecture for Self-Supervised Monocular Depth Estimation

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 99.7%
  • Shell 0.3%