Skip to content
/ DEGC Public

Code for our paper 'Dynamically Expandable Graph Convolution for Streaming Recommendation' accepted by the Web Conference (WWW) 2023.

License

Notifications You must be signed in to change notification settings

BokwaiHo/DEGC

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

2 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Dynamically Expandable Graph Convolution for Streaming Recommendation.

Note: We will continue to update and improve the code and related docs.

Environment requirement

See requirement.txt

Log file directory

-log-files sets where the results logs are saved

-load_save_path_prefix sets top-level directory for saved models

log_folder sets the sub-directory for saved models

Command examples

  • Training baselines

Fine-tune: python -u run_baselines_segments.py -d Taobao2014 -bm MGCCF -alg Finetune -de 0 -e 25 -train_mode sep -log_folder test -log test_Finetune -save_cp b0_100e -patience 2 -lr 1e-3

TWP: python -u run_baselines_segments.py -d Taobao2014 -bm MGCCF -alg TWP -de 1 -e 25 -train_mode sep -log_folder test -log test_TWP -save_cp b0_100e -mse 100 -local_distill 1e4 -local_mode LSP_s -patience 2 -lr 1e-3

GraphSAIL: python -u run_baselines_segments.py -d Taobao2014 -bm MGCCF -alg GraphSAIL -de 0 -e 25 -train_mode sep -log_folder test -log test_GraphSAIL -save_cp b0_100e -mse 100 -local_distill 1e4 -local_mode LSP_s -global_distill 1e4 -global_k 50,50 -global_tau 1 -patience 2 -lr 1e-3

Inverse Degree Sampling: python -u run_baselines_segments.py -d Taobao2014 -bm MGCCF -alg Inverse_Sampling -de 2 -e 20 -train_mode sep -log_folder test -log test_Inverse_Sampling -save_cp b0_100e -rs full -union_mode snu -replay_ratio 0.2 -sampling_mode inverse_deg -patience 2 -lr 1e-3

SGCT: python -u run_baselines_segments.py -d Taobao2014 -bm MGCCF -alg SGCT -de 3 -e 25 -train_mode sep -log_folder test -log test_SGCT -save_cp b0_100e -layer_wise 0 -contrastive_mode 'Single' -lambda_contrastive 1000,0,0 -con_positive 15 -con_ratios 2,1,2,0,0,0,0 -patience 2 -lr 1e-3

MGCT: python -u run_baselines_segments.py -d Taobao2014 -bm MGCCF -alg MGCT -de 0 -e 25 -train_mode sep -log_folder test -log test_MGCT -save_cp b0_100e -layer_wise 0 -contrastive_mode 'Multi' -lambda_contrastive 100,0,0 -con_positive 15 -con_ratios 2,1,2,1,1,1,1 -patience 2 -lr 1e-3

LWC-KD: python -u run_baselines_segments.py -d Taobao2014 -bm MGCCF -alg LWC_KD -de 0 -e 25 -train_mode sep -log_folder test -log test_LWC_KD -save_cp b0_100e -layer_wise 1 -contrastive_mode 'Multi' -lambda_contrastive 100,100,1000 -con_positive 15 -con_ratios 2,1,2,1,1,1,1 -patience 2 -lr 1e-3

ContinualGNN: python -u run_baselines_segments.py -d Taobao2014 -bm MGCCF -alg ContinualGNN -de 0 -e 25 -train_mode sep -log_folder test -log test_ContinualGNN -save_cp b0_100e -mse 100 -local_distill 1e4 -local_mode LSP_s -rs full -union_mode snu -replay_ratio 0.2 -sampling_mode uniform -patience 2 -lr 1e-3 -first_segment_time 18 -last_segment_time 48

Uniform Experience Replay: python -u run_baselines_segments.py -d Taobao2014 -bm MGCCF -alg uniform_sampling -de 0 -e 20 -train_mode sep -log_folder test -log test_uniform_sampling -save_cp b0_100e -rs full -union_mode snu -replay_ratio 0.2 -sampling_mode uniform -patience 2 -lr 1e-3

Full Batch Replay: python -u run_baselines_segments.py -d Taobao2014 -bm MGCCF -alg Full_batch -de 0 -e 20 -train_mode acc -log_folder test -log test_Full_batch -save_cp b0_100e -full_batch -patience 2 -lr 1e-3

  • Training DEGC

DEGC+Finetune: python -u run_DEGC.py -d Taobao2014 -bm MGCCF -alg DEGC+Finetune -de 0 -e 25 -train_mode sep -log_folder test -log test_DEGC+Finetune -save_cp b0_100e -patience 2 -lr 1e-3

DEGC+LWC-KD: python -u run_DEGC.py -d Taobao2014 -bm MGCCF -alg DEGC+LWC_KD -de 0 -e 25 -train_mode sep -log_folder test -log test_DEGC+LWC_KD -save_cp b0_100e -layer_wise 1 -contrastive_mode 'Multi' -lambda_contrastive 100,100,1000 -con_positive 15 -con_ratios 2,1,2,1,1,1,1 -patience 2 -lr 1e-3

About

Code for our paper 'Dynamically Expandable Graph Convolution for Streaming Recommendation' accepted by the Web Conference (WWW) 2023.

Resources

License

Stars

Watchers

Forks

Packages

No packages published