Skip to content

Commit

Permalink
Simplified Schwarzschild circ velocities so they are finite on ISCO #50
Browse files Browse the repository at this point in the history
  • Loading branch information
Philip-Lynch committed Jul 12, 2023
1 parent 5cc3ab1 commit 6e9d7bb
Showing 1 changed file with 49 additions and 2 deletions.
51 changes: 49 additions & 2 deletions Kernel/FourVelocity.m
Original file line number Diff line number Diff line change
Expand Up @@ -23,7 +23,54 @@
KerrGeoFourVelocity::parametrization = "Parameterization error: `1`"


(* ::Section::Closed:: *)
(* ::Section:: *)
(*Schwarzschild*)


(* ::Subsection:: *)
(*Circular, Equatorial*)


KerrGeoVelocityMino[(0|0.),p_,(0|0.),x_,initPhases_,index_ ]:= Module[{En,L,Q,r,z,r1,r2,r3,r4,kr,zp,zm,kz, \[CapitalUpsilon]r, \[CapitalUpsilon]z,
qr, qz, \[Lambda]local ,qr0, qz0, rprime, zprime, \[CapitalDelta], \[CapitalSigma], \[Omega], utContra,urContra,u\[Theta]Contra,uzContra,u\[Phi]Contra, utCo, urCo, u\[Theta]Co, u\[Phi]Co},

(*Constants of Motion*)
{En,L,Q}= {"\[ScriptCapitalE]","\[ScriptCapitalL]","\[ScriptCapitalQ]"}/.KerrGeoConstantsOfMotion[0,p,0,x];

\[CapitalUpsilon]z = p/Sqrt[-3+p];

{qr0,qz0} = initPhases;

qz[\[Lambda]_] := \[Lambda] \[CapitalUpsilon]z + qz0;

If[index == "Contravariant",

utContra= Function[{Global`\[Lambda]},Evaluate[Sqrt[p/(-3+p)] ], Listable];
urContra:= Function[{Global`\[Lambda]},Evaluate[0],Listable];
u\[Theta]Contra = Function[{Global`\[Lambda]}, Evaluate[(Sqrt[((1-x^2)/(-3+p))] Sin[qz[Global`\[Lambda]]] )/(p Sqrt[1+(-1+x^2) Cos[qz[Global`\[Lambda]]]^2])],Listable];
u\[Phi]Contra = Function[{Global`\[Lambda]},Evaluate[x/(Sqrt[-3+p] (p+p (-1+x^2) Cos[qz[Global`\[Lambda]]]^2))],Listable];

<|"\!\(\*SuperscriptBox[\(u\), \(t\)]\)"->utContra, "\!\(\*SuperscriptBox[\(u\), \(r\)]\)"->urContra, "\!\(\*SuperscriptBox[\(u\), \(\[Theta]\)]\)"-> u\[Theta]Contra, "\!\(\*SuperscriptBox[\(u\), \(\[Phi]\)]\)"-> u\[Phi]Contra|>,

(*Else if Index \[Equal] Covariant*)

utCo = Function[{Global`\[Lambda]},Evaluate[-En], Listable];
urCo= Function[{Global`\[Lambda]},Evaluate[0],Listable];
u\[Theta]Co= Function[{Global`\[Lambda]},Evaluate[(p Sqrt[(1-x^2)/(-3+p)] Sin[qz[Global`\[Lambda]]])/ Sqrt[1+(-1+x^2) Cos[qz[Global`\[Lambda]]]^2]],Listable];
u\[Phi]Co= Function[{Global`\[Lambda]},Evaluate[L],Listable];

<|"\!\(\*SubscriptBox[\(u\), \(t\)]\)"->utCo, "\!\(\*SubscriptBox[\(u\), \(r\)]\)"->urCo, "\!\(\*SubscriptBox[\(u\), \(\[Theta]\)]\)"-> u\[Theta]Co, "\!\(\*SubscriptBox[\(u\), \(\[Phi]\)]\)"-> u\[Phi]Co|>
]


]


(* ::Subsection:: *)
(*Eccentric*)


(* ::Section:: *)
(*Kerr*)


Expand Down Expand Up @@ -185,7 +232,7 @@
]


(* ::Section::Closed:: *)
(* ::Section:: *)
(*KerrGeoFourVelocity Wrapper*)


Expand Down

0 comments on commit 6e9d7bb

Please sign in to comment.