Skip to content

Commit

Permalink
🚧 Factorize [max/mean/weighted_*]_trophic_level.
Browse files Browse the repository at this point in the history
  • Loading branch information
iago-lito committed Apr 18, 2023
1 parent 047b0cb commit 9e711d8
Showing 1 changed file with 51 additions and 49 deletions.
100 changes: 51 additions & 49 deletions src/measures/functioning.jl
Original file line number Diff line number Diff line change
Expand Up @@ -439,18 +439,20 @@ function alive_trophic_network(n::AbstractVector, A::AbstractMatrix; kwargs...)
(; species, species_biomass, trophic_level, A)
end

"""
max_trophic_level(solution; threshold, kwargs...)
docstring = """
max_trophic_level(solution; threshold, kwargs...)
mean_trophic_level(solution; threshold, kwargs...)
weighted_average_trophic_level(solution; threshold, kwargs...)
Returns the maximum trophic level averaged over the `last` timesteps.
Return the aggregated trophic level over the `last` timesteps,
either with `max` or `mean` aggregation,
or by the mean trophic level weighted by species biomasses.
kwargs... arguments are forwarded to [`extract_last_timesteps`](@ref). See
[`extract_last_timesteps`](@ref) for the argument details.
`max_trophic_level()` also handles biomass vectors associated with a network, as well as
These functions also handle biomass vectors associated with a network, as well as
a vector of trophic levels (See examples).
`mean_trophic_level()` and `weighted_average_trophic_level()`, respectively computing the
mean trophic level and the mean trophic level weighted by species biomasses work the same.
# Examples
Expand Down Expand Up @@ -497,58 +499,58 @@ julia> w = weighted_average_trophic_level(sol);
1.54
```
"""
function max_trophic_level(solution::SciMLBase.ODESolution; threshold = 0, kwargs...)
measure_on = extract_last_timesteps(solution; kwargs...)
net = get_parameters(solution).network.A

out = []
for i in 1:size(measure_on, 2)
tmp = max_trophic_level(measure_on[:, i], net; threshold)
push!(out, tmp)
# Generate the three functions in a row with macros.
function on_matrices(op_name, aggregate_function)
op_trophic_level = Symbol(op_name, :_trophic_level)
return quote
function $op_trophic_level(n::AbstractVector, A::AbstractMatrix; kwargs...)
out = alive_trophic_network(n, A; kwargs...)
tlvl = out.trophic_level
$op_trophic_level(tlvl)
end
$op_trophic_level(A::AbstractMatrix;) = $op_trophic_level(trophic_levels(A))
$op_trophic_level(tlvl::AbstractVector) =
isempty(tlvl) ? NaN : $aggregate_function(tlvl)
end
mean(out)
end
function max_trophic_level(n::AbstractVector, A::AbstractMatrix; kwargs...)
out = alive_trophic_network(n, A; kwargs...)
tlvl = out.trophic_level
max_trophic_level(tlvl)
end
max_trophic_level(A::AbstractMatrix;) = max_trophic_level(trophic_levels(A))
max_trophic_level(tlvl::AbstractVector) = isempty(tlvl) ? NaN : maximum(tlvl)

function mean_trophic_level(solution::SciMLBase.ODESolution; threshold = 0, kwargs...)
measure_on = extract_last_timesteps(solution; kwargs...)
net = get_parameters(solution).network.A
function aggregate_trophic_level(op_name, aggregate_function)
op_trophic_level = Symbol(op_name, :_trophic_level)
if isnothing(aggregate_function)
on_matrices_code = :()
else
on_matrices_code = on_matrices(op_name, aggregate_function)
end
return quote

@doc $docstring function $op_trophic_level(
solution::SciMLBase.ODESolution;
threshold = 0,
kwargs...,
)
measure_on = extract_last_timesteps(solution; kwargs...)
net = get_parameters(solution).network.A

out = []
for i in 1:size(measure_on, 2)
tmp = $op_trophic_level(measure_on[:, i], net; threshold)
push!(out, tmp)
end
mean(out)
end

$on_matrices_code

out = []
for i in 1:size(measure_on, 2)
tmp = mean_trophic_level(measure_on[:, i], net; threshold)
push!(out, tmp)
end
mean(out)
end
function mean_trophic_level(n::AbstractVector, A::AbstractMatrix; kwargs...)
out = alive_trophic_network(n, A; kwargs...)
mean_trophic_level(out.trophic_level)
end
mean_trophic_level(A::AbstractMatrix;) = mean_trophic_level(trophic_levels(A))
mean_trophic_level(tlvl::AbstractVector) = isempty(tlvl) ? NaN : mean(tlvl)

function weighted_average_trophic_level(
solution::SciMLBase.ODESolution;
threshold = 0,
kwargs...,
)
measure_on = extract_last_timesteps(solution; kwargs...)
net = get_parameters(solution).network.A
# Generation happens here.
eval(aggregate_trophic_level(:max, :maximum))
eval(aggregate_trophic_level(:mean, :mean))
eval(aggregate_trophic_level(:weighted_average, nothing))

out = []
for i in 1:size(measure_on, 2)
tmp = weighted_average_trophic_level(measure_on[:, i], net; threshold)
push!(out, tmp)
end
mean(out)
end
# The code differs slightly in the weighted_average case.
function weighted_average_trophic_level(n::AbstractVector, A::AbstractMatrix; kwargs...)
out = alive_trophic_network(n, A; kwargs...)
bm = out.species_biomass
Expand Down

0 comments on commit 9e711d8

Please sign in to comment.