-
Notifications
You must be signed in to change notification settings - Fork 9
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
notebook to convert observed transit demand csv to omx
- Loading branch information
1 parent
fc86cb8
commit 7317539
Showing
1 changed file
with
305 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,305 @@ | ||
{ | ||
"cells": [ | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 19, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"import openmatrix as omx\n", | ||
"import pandas as pd\n", | ||
"import numpy as np" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 20, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"NUM_ZONES = 4735" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 21, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"observed_demand_csv_file = 'V:/projects/MTC/transit_path_builder_calib/observed-demand-year-2015-am-emme-taz-by-path-trimmed.csv'\n", | ||
"output_observed_omx_file = 'V:/projects/MTC/transit_path_builder_calib/trn_observed_demand_am.omx'" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 4, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"matrix_array_knr_trn_wlk = np.zeros((NUM_ZONES, NUM_ZONES))\n", | ||
"matrix_array_pnr_trn_wlk = np.zeros((NUM_ZONES, NUM_ZONES))\n", | ||
"matrix_array_wlk_trn_knr = np.zeros((NUM_ZONES, NUM_ZONES))\n", | ||
"matrix_array_wlk_trn_pnr = np.zeros((NUM_ZONES, NUM_ZONES))\n", | ||
"matrix_array_wlk_trn_wlk = np.zeros((NUM_ZONES, NUM_ZONES))" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 5, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"with open(observed_demand_csv_file, 'r') as f:\n", | ||
" for idx, line in enumerate(f):\n", | ||
" if idx == 0:\n", | ||
" continue # skip the header row\n", | ||
" period, path_type, orig, dest, trips = line.strip().split(',')\n", | ||
" orig = int(orig)\n", | ||
" dest = int(dest)\n", | ||
" trips = float(trips)\n", | ||
"\n", | ||
" if path_type == 'knr_trn_wlk': \n", | ||
" matrix_array_knr_trn_wlk[orig-1][dest-1] = trips\n", | ||
"\n", | ||
" if path_type == 'pnr_trn_wlk': \n", | ||
" matrix_array_pnr_trn_wlk[orig-1][dest-1] = trips\n", | ||
"\n", | ||
" if path_type == 'wlk_trn_knr': \n", | ||
" matrix_array_wlk_trn_knr[orig-1][dest-1] = trips\n", | ||
"\n", | ||
" if path_type == 'wlk_trn_pnr': \n", | ||
" matrix_array_wlk_trn_pnr[orig-1][dest-1] = trips\n", | ||
"\n", | ||
" if path_type == 'wlk_trn_wlk': \n", | ||
" matrix_array_wlk_trn_wlk[orig-1][dest-1] = trips \n", | ||
" " | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 6, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"output_matrix = omx.open_file(output_observed_omx_file, mode=\"w\")\n", | ||
"output_matrix['KNR_TRN_WLK'] = matrix_array_knr_trn_wlk\n", | ||
"output_matrix['PNR_TRN_WLK'] = matrix_array_pnr_trn_wlk\n", | ||
"output_matrix['WLK_TRN_KNR'] = matrix_array_wlk_trn_knr\n", | ||
"output_matrix['WLK_TRN_PNR'] = matrix_array_wlk_trn_pnr\n", | ||
"output_matrix['WLK_TRN_WLK'] = matrix_array_wlk_trn_wlk" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 7, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"output_matrix.close()" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 8, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"mat = omx.open_file(output_observed_omx_file, 'r')" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 9, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"mat1 = mat['KNR_TRN_WLK'].read()\n", | ||
"mat2 = mat['PNR_TRN_WLK'].read()\n", | ||
"mat3 = mat['WLK_TRN_KNR'].read()\n", | ||
"mat4 = mat['WLK_TRN_PNR'].read()\n", | ||
"mat5 = mat['WLK_TRN_WLK'].read()" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 10, | ||
"metadata": {}, | ||
"outputs": [ | ||
{ | ||
"data": { | ||
"text/plain": [ | ||
"358127.57831695606" | ||
] | ||
}, | ||
"execution_count": 10, | ||
"metadata": {}, | ||
"output_type": "execute_result" | ||
} | ||
], | ||
"source": [ | ||
"sum(sum(mat1)) + sum(sum(mat2)) + sum(sum(mat3)) + sum(sum(mat4)) + sum(sum(mat5))" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 11, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"mat.close()" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 22, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"demand_df = pd.read_csv(observed_demand_csv_file)" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 23, | ||
"metadata": {}, | ||
"outputs": [ | ||
{ | ||
"data": { | ||
"text/html": [ | ||
"<div>\n", | ||
"<style scoped>\n", | ||
" .dataframe tbody tr th:only-of-type {\n", | ||
" vertical-align: middle;\n", | ||
" }\n", | ||
"\n", | ||
" .dataframe tbody tr th {\n", | ||
" vertical-align: top;\n", | ||
" }\n", | ||
"\n", | ||
" .dataframe thead th {\n", | ||
" text-align: right;\n", | ||
" }\n", | ||
"</style>\n", | ||
"<table border=\"1\" class=\"dataframe\">\n", | ||
" <thead>\n", | ||
" <tr style=\"text-align: right;\">\n", | ||
" <th></th>\n", | ||
" <th>model_time</th>\n", | ||
" <th>path_type</th>\n", | ||
" <th>orig_emme_taz</th>\n", | ||
" <th>dest_emme_taz</th>\n", | ||
" <th>trips</th>\n", | ||
" </tr>\n", | ||
" </thead>\n", | ||
" <tbody>\n", | ||
" <tr>\n", | ||
" <th>0</th>\n", | ||
" <td>am</td>\n", | ||
" <td>knr_trn_wlk</td>\n", | ||
" <td>1</td>\n", | ||
" <td>2953</td>\n", | ||
" <td>12.064273</td>\n", | ||
" </tr>\n", | ||
" <tr>\n", | ||
" <th>1</th>\n", | ||
" <td>am</td>\n", | ||
" <td>knr_trn_wlk</td>\n", | ||
" <td>2</td>\n", | ||
" <td>1055</td>\n", | ||
" <td>5.721250</td>\n", | ||
" </tr>\n", | ||
" <tr>\n", | ||
" <th>2</th>\n", | ||
" <td>am</td>\n", | ||
" <td>knr_trn_wlk</td>\n", | ||
" <td>3</td>\n", | ||
" <td>2592</td>\n", | ||
" <td>1.040014</td>\n", | ||
" </tr>\n", | ||
" <tr>\n", | ||
" <th>3</th>\n", | ||
" <td>am</td>\n", | ||
" <td>knr_trn_wlk</td>\n", | ||
" <td>5</td>\n", | ||
" <td>2178</td>\n", | ||
" <td>4.855805</td>\n", | ||
" </tr>\n", | ||
" <tr>\n", | ||
" <th>4</th>\n", | ||
" <td>am</td>\n", | ||
" <td>knr_trn_wlk</td>\n", | ||
" <td>7</td>\n", | ||
" <td>398</td>\n", | ||
" <td>20.209921</td>\n", | ||
" </tr>\n", | ||
" </tbody>\n", | ||
"</table>\n", | ||
"</div>" | ||
], | ||
"text/plain": [ | ||
" model_time path_type orig_emme_taz dest_emme_taz trips\n", | ||
"0 am knr_trn_wlk 1 2953 12.064273\n", | ||
"1 am knr_trn_wlk 2 1055 5.721250\n", | ||
"2 am knr_trn_wlk 3 2592 1.040014\n", | ||
"3 am knr_trn_wlk 5 2178 4.855805\n", | ||
"4 am knr_trn_wlk 7 398 20.209921" | ||
] | ||
}, | ||
"execution_count": 23, | ||
"metadata": {}, | ||
"output_type": "execute_result" | ||
} | ||
], | ||
"source": [ | ||
"demand_df.head()" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 24, | ||
"metadata": {}, | ||
"outputs": [ | ||
{ | ||
"data": { | ||
"text/plain": [ | ||
"358127.5783169544" | ||
] | ||
}, | ||
"execution_count": 24, | ||
"metadata": {}, | ||
"output_type": "execute_result" | ||
} | ||
], | ||
"source": [ | ||
"sum(demand_df.trips)" | ||
] | ||
} | ||
], | ||
"metadata": { | ||
"kernelspec": { | ||
"display_name": "Python 3.7.6 64-bit", | ||
"language": "python", | ||
"name": "python3" | ||
}, | ||
"language_info": { | ||
"codemirror_mode": { | ||
"name": "ipython", | ||
"version": 3 | ||
}, | ||
"file_extension": ".py", | ||
"mimetype": "text/x-python", | ||
"name": "python", | ||
"nbconvert_exporter": "python", | ||
"pygments_lexer": "ipython3", | ||
"version": "3.7.6" | ||
}, | ||
"orig_nbformat": 4, | ||
"vscode": { | ||
"interpreter": { | ||
"hash": "7101b7e646de3258f76ee66cfd1dea119f34dcc7025f6e5a1711703ceabc892c" | ||
} | ||
} | ||
}, | ||
"nbformat": 4, | ||
"nbformat_minor": 2 | ||
} |