forked from arunsm/motion-FC-metrics
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathcomputeQCFC.m
executable file
·277 lines (228 loc) · 17.1 KB
/
computeQCFC.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
% Script to compute QC-FC (quality control-functional connectivity) metrics
% fraction significant edges, median absolute correlation
%% set parameters
preprocessingVariants = {'gsr_filter', 'gsr_nofilter', 'nogsr_filter', 'nogsr_nofilter'};
FC_methods = {'Pearson', 'Spearman', 'PartialCorrelation', 'TikhonovPartialCorrelation', 'Coherence', 'WaveletCoherence', 'MutualInformation', 'MutualInformationTime'};
atlasTypes = {'gordon', 'yeo_100'};
restingStateScans = {'REST1_LR', 'REST1_RL','REST2_LR', 'REST2_RL'};
subjectDemographics = readtable('../data/Covariates/S1200_Release_Subjects_Demographics.csv'); % reading demographic information
nSubjects_total = numel(subjectDemographics.Subject);
%% looping through all preprocessing variants, FC methods, atlases and scans
for p = 1:numel(preprocessingVariants)
currentPreprocessingVariant = preprocessingVariants{p};
fprintf(currentPreprocessingVariant); fprintf('\n')
saveResultsFolder = strcat('Results/', date, filesep, currentPreprocessingVariant, filesep);
if ~exist(saveResultsFolder)
mkdir(saveResultsFolder);
end
path2FC_matrices = strcat('../data/FunctionalConnectivityMatrices_', currentPreprocessingVariant, filesep);
currentPipeline = 'FIX_matrices'; % computing QC-FC only for ICA_FIX pipeline
for fc = 1:numel(FC_methods)
current_FC_method = FC_methods{fc};
fprintf(current_FC_method); fprintf('\n')
for a = 1:numel(atlasTypes)
currentAtlasType = atlasTypes{a};
fprintf(currentAtlasType); fprintf('\n');
TRT_parameters = {}; % cell array with test-retest reliability parameters
edgeWeights_allScans = cell(nSubjects_total, 5); % cell array of edge weights for all scans
motion_allScans = cell(nSubjects_total, 5); % cell array of motion for all scans
edgeWeights_allScans(:, 1) = num2cell(subjectDemographics.Subject);
motion_allScans(:, 1) = num2cell(subjectDemographics.Subject);
for t = 1:numel(restingStateScans)
currentRestingStateScan = restingStateScans{t};
fprintf(currentRestingStateScan); fprintf('\n');
QCFC_parameters = {}; % cell array with QC-FC parameters
%% compile motion and demographic information
path2MotionFiles = strcat('../data/Motion_S1200/rfMRI_', currentRestingStateScan, '/');
path2MovementRegressorFiles = strcat('../data/MovementRegressors_S1200/rfMRI_', currentRestingStateScan, '/');
d = dir(strcat(path2MotionFiles, '*_Movement_RelativeRMS_mean.txt'));
fnme = {d.name};
nSubjects_motion = numel(fnme); % number of subjects for whom motion data is available
subject_ID_motion = zeros(nSubjects_motion, 5); % matrix containing [subject ID, relative RMS motion, mean FD (after filtering), age, gender]
for i = 1:nSubjects_motion
currentMotionFileName = fnme{i};
k = strfind(currentMotionFileName, '_');
currentSubjectID = str2double(currentMotionFileName(1:k(1)-1)); % pulling out subject ID (numeric sequence before first '_')
% import mean relative RMS motion
currentFilePath = strcat(path2MotionFiles, fnme{i});
currentMeanRelativeRMSmotion = importdata(currentFilePath);
% calculate mean FD from filtered realignment
% parameters
currentFilePath = strcat(path2MovementRegressorFiles, strrep(fnme{i}, 'RelativeRMS_mean', 'Regressors'));
currentRP = importdata(currentFilePath); % import realignment parameters
currentRP = currentRP(:, 1:6); % read in 6 motion parameters
currentRP(:, 4:6) = deg2rad(currentRP(:, 4:6)); % convert rotational parameters from degrees to radians
filteredRP = filterRealignmentParameters(currentRP); % filter realignment parameters according to Fair et al, NeuroImage (2020)
FD = calculatePowerFD(filteredRP);
meanFD = mean(FD);
currentAgeString = subjectDemographics.Age{subjectDemographics.Subject == currentSubjectID};
switch currentAgeString
case '22-25'
currentAge = (22+25)/2;
case '26-30'
currentAge = (26+30)/2;
case '31-35'
currentAge = (31+35)/2;
case '36+'
currentAge = 36;
end
currentGenderString = subjectDemographics.Gender{subjectDemographics.Subject == currentSubjectID};
switch currentGenderString
case 'F'
currentGender = 1;
case 'M'
currentGender = 0;
end
subject_ID_motion(i, :) = [currentSubjectID currentMeanRelativeRMSmotion meanFD currentAge currentGender];
end
%% read in adjacency matrices for each subject
currentReadPath = strcat(path2FC_matrices, currentAtlasType, '*', currentRestingStateScan, '_', currentPipeline, '_', current_FC_method, '.mat');
d = dir(currentReadPath);
fnme = {d.name};
nSubjects_FC = numel(fnme); % number of subjects for whom functional connectivity is available
motion_edgeWeight_allSubjects = {}; % main cell array with fields; {subjectID, meanRelativeMotion, edge weights, age, gender} - one for each FC method
for i = 1:nSubjects_FC
currentFile = fnme{i};
k = strfind(currentFile(length(currentAtlasType)+1:end), '_'); k = k+length(currentAtlasType); % finding '_' characters, skipping atlas name
currentSubjectID = str2double(currentFile(k(1)+1:k(2)-1)); % pulling out subject ID (numeric sequence between first and second '_')
if sum(ismember(subject_ID_motion(:, 1), currentSubjectID)) == 0
fprintf('motion info for subject %d not available\n', currentSubjectID);
continue;
else
currentMeanRelativeRMSmotion = subject_ID_motion(subject_ID_motion(:, 1) == currentSubjectID, 2); % reading in mean relative RMS motion
currentMeanFD = subject_ID_motion(subject_ID_motion(:, 1) == currentSubjectID, 3); % reading in FD after filtering realignment parameters
currentAge = subject_ID_motion(subject_ID_motion(:, 1) == currentSubjectID, 4); % reading in age
currentGender = subject_ID_motion(subject_ID_motion(:, 1) == currentSubjectID, 5); % reading in gender
end
currentFilePath = strcat(path2FC_matrices, filesep, currentFile); % reading in adjacency matrix, variable name 'AdjMat'
load(currentFilePath, 'AdjMat');
%AdjMat = atanh(AdjMat); % applying Fisher z-transform (implement only for correlation based metrics)
% converting upper triangular matrix to symmetric matrix
if istriu(AdjMat)
AdjMat = (AdjMat+AdjMat' - eye(size(AdjMat,1)).*diag(AdjMat));
end
nNodes = size(AdjMat, 1);
edgeWeights = computeEdgeWeights(AdjMat); % computing edge weights
nEdges = size(edgeWeights, 2);
motion_edgeWeight_allSubjects = [motion_edgeWeight_allSubjects; {currentSubjectID, currentMeanRelativeRMSmotion, currentMeanFD, edgeWeights, currentAge, currentGender}];
motion_allScans{subjectDemographics.Subject == currentSubjectID, t+1} = currentMeanRelativeRMSmotion;
edgeWeights_allScans{subjectDemographics.Subject == currentSubjectID, t+1} = edgeWeights;
end
nSubjects_completeData = size(motion_edgeWeight_allSubjects, 1); % number of subjects with motion and FC data
%% compute average edge weights across subjects
averageEdgeWeights = zeros(size(motion_edgeWeight_allSubjects{1, 4}));
for i = 1:nSubjects_completeData
averageEdgeWeights = averageEdgeWeights + motion_edgeWeight_allSubjects{i, 4};
end
averageEdgeWeights = averageEdgeWeights/nSubjects_completeData;
%% compute correlations between motion and edge strengths
QCFC_correlations = [];
QCFC_correlations_meanFD = [];
QCFC_correlations_noCorrections = [];
QCFC_correlations_significance = [];
QCFC_correlations_meanFD_significance = [];
QCFC_correlations_significance_noCorrections = [];
QCFC_correlations_significance_absoluteValues = [];
QCFC_correlations_significance_zeroedOut = [];
for e = 1:nEdges % loop over all edges
edgeWeights = [];
for i = 1:nSubjects_completeData
edgeWeights = [edgeWeights; motion_edgeWeight_allSubjects{i, 4}(e)];
end
meanRelativeRMSmotion = cell2mat(motion_edgeWeight_allSubjects(:, 2));
meanFD = cell2mat(motion_edgeWeight_allSubjects(:, 3));
age = cell2mat(motion_edgeWeight_allSubjects(:, 5));
gender = cell2mat(motion_edgeWeight_allSubjects(:, 6));
[rho, pValue] = partialcorr(edgeWeights, meanFD, [age gender], 'Rows', 'complete');
QCFC_correlations_meanFD = [QCFC_correlations_meanFD rho];
QCFC_correlations_meanFD_significance = [QCFC_correlations_meanFD_significance pValue];
[rho, pValue] = corr(edgeWeights, meanRelativeRMSmotion, 'Rows', 'complete');
QCFC_correlations_noCorrections = [QCFC_correlations_noCorrections rho];
QCFC_correlations_significance_noCorrections = [QCFC_correlations_significance_noCorrections pValue];
[rho, pValue] = partialcorr(edgeWeights, meanRelativeRMSmotion, [age gender], 'Rows', 'complete');
QCFC_correlations = [QCFC_correlations rho];
QCFC_correlations_significance = [QCFC_correlations_significance pValue];
edgeWeights_absoluteValues = abs(edgeWeights);
[~, pValue] = partialcorr(edgeWeights_absoluteValues, meanRelativeRMSmotion, [age gender], 'Rows', 'complete');
QCFC_correlations_significance_absoluteValues = [QCFC_correlations_significance_absoluteValues pValue];
edgeWeights_zeroedOut = edgeWeights;
edgeWeights_zeroedOut(edgeWeights_zeroedOut<0) = 0;
[~, pValue] = partialcorr(edgeWeights_zeroedOut, meanRelativeRMSmotion, [age gender], 'Rows', 'complete');
QCFC_correlations_significance_zeroedOut = [QCFC_correlations_significance_zeroedOut pValue];
end
% correction for multiple comparisons
FDR = mafdr(QCFC_correlations_significance, 'BHFDR', true);
fractionSignificantEdges_FDR = sum(FDR<0.05)/numel(FDR);
fractionSignificantEdges_meanFD = sum(QCFC_correlations_meanFD_significance<0.05)/numel(QCFC_correlations_meanFD_significance);
fractionSignificantEdges_noFDR = sum(QCFC_correlations_significance<0.05)/numel(QCFC_correlations_significance);
fractionSignificantEdges_noCorrections_noFDR = sum(QCFC_correlations_significance_noCorrections<0.05)/numel(QCFC_correlations_significance_noCorrections);
fractionSignificantEdges_absoluteValues_noFDR = sum(QCFC_correlations_significance_absoluteValues<0.05)/numel(QCFC_correlations_significance_absoluteValues);
fractionSignificantEdges_zeroedOut_noFDR = sum(QCFC_correlations_significance_zeroedOut<0.05)/numel(QCFC_correlations_significance_zeroedOut);
subjectCovariates = [cell2mat(motion_edgeWeight_allSubjects(:, 1)), age, gender, meanRelativeRMSmotion, meanFD];
QCFC_parameters = {fractionSignificantEdges_FDR, fractionSignificantEdges_noFDR, fractionSignificantEdges_meanFD, ...
fractionSignificantEdges_noCorrections_noFDR, fractionSignificantEdges_absoluteValues_noFDR, ...
fractionSignificantEdges_zeroedOut_noFDR, QCFC_correlations, QCFC_correlations_noCorrections, ...
averageEdgeWeights, nSubjects_completeData, subjectCovariates};
QCFC_parameters = cell2table(QCFC_parameters, 'VariableNames', {'fractionSignificantEdges_FDR', 'fractionSignificantEdges_noFDR', 'fractionSignificantEdges_meanFD', ...
'fractionSignificantEdges_noCorrections_noFDR', 'fractionSignificantEdges_absoluteValues_noFDR', 'fractionSignificantEdges_zeroedOut_noFDR', ...
'QCFC_correlations', 'QCFC_correlations_noCorrections', 'averageEdgeWeights', 'nSubjects', 'subjectCovariates'});
save(strcat(saveResultsFolder, 'QCFC_parameters_', current_FC_method, '_', currentAtlasType, '_', currentRestingStateScan, '.mat'), 'QCFC_parameters');
end
%% computing test-retest reliability
nScans = 4;
% reducing data to subjects with all 4 scans
flag_all4Scans = ones(nSubjects_total, 1);
for i = 1:nSubjects_total
if isempty(edgeWeights_allScans{i, 2}) || isempty(edgeWeights_allScans{i, 3}) || isempty(edgeWeights_allScans{i, 4}) || isempty(edgeWeights_allScans{i, 5})
flag_all4Scans(i) = 0;
end
end
idx_all4Scans = find(flag_all4Scans);
edgeWeights_allScans = edgeWeights_allScans(idx_all4Scans, :);
motion_allScans = motion_allScans(idx_all4Scans, :);
nSubjects_all4scans = size(edgeWeights_allScans, 1);
% compute fingerprinting accuracy for all combinations of scans
fingerprintingAccuracy = zeros(1, 12); % 12 combinations of target and database from 4 resting state scans
ctr = 1;
for t = 1:nScans
targetEdgeWeights = edgeWeights_allScans(:, t+1);
for d = 1:nScans
if t ~= d
databaseEdgeWeights = edgeWeights_allScans(:, d+1);
idx_match = zeros(1, nSubjects_all4scans);
for i = 1:nSubjects_all4scans
currentTargetEdgeWeights = targetEdgeWeights{i};
idx_match(i) = calculateFingerprintAccuracy(databaseEdgeWeights, currentTargetEdgeWeights, i);
end
fingerprintingAccuracy(ctr) = sum(idx_match)/nSubjects_all4scans;
ctr = ctr + 1;
end
end
end
% compute intra-class correlation for edge weights
ICC_allEdges = zeros(1, nEdges);
for e = 1:nEdges
% build a nSubjects x nScans matrix for each edge
TRT_matrix_edges = zeros(nSubjects_all4scans, nScans);
for i = 1:nSubjects_all4scans
for j = 1:nScans
TRT_matrix_edges(i, j) = edgeWeights_allScans{i, j+1}(e);
end
end
ICC = computeICC(TRT_matrix_edges);
ICC_allEdges(e) = ICC;
end
% compute intra-class correlation for subject motion
TRT_matrix_motion = zeros(nSubjects_all4scans, nScans);
for i = 1:nSubjects_all4scans
for j = 1:nScans
TRT_matrix_motion(i, j) = motion_allScans{i, j+1};
end
end
ICC_motion = computeICC(TRT_matrix_motion);
TRT_parameters = {fingerprintingAccuracy, ICC_allEdges, ICC_motion, nSubjects_all4scans};
TRT_parameters = cell2table(TRT_parameters, 'VariableNames', {'fingerprintingAccuracy', 'ICC_allEdges', 'ICC_motion', 'nSubjects_all4scans'});
save(strcat(saveResultsFolder, 'TRT_parameters_', current_FC_method, '_', currentAtlasType, '.mat'), 'TRT_parameters');
end
end
end