-
Notifications
You must be signed in to change notification settings - Fork 35
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
9 changed files
with
715 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,104 @@ | ||
# Byte-compiled / optimized / DLL files | ||
__pycache__/ | ||
*.py[cod] | ||
*$py.class | ||
|
||
# C extensions | ||
*.so | ||
|
||
# Distribution / packaging | ||
.Python | ||
build/ | ||
develop-eggs/ | ||
dist/ | ||
downloads/ | ||
eggs/ | ||
.eggs/ | ||
lib/ | ||
lib64/ | ||
parts/ | ||
sdist/ | ||
var/ | ||
wheels/ | ||
*.egg-info/ | ||
.installed.cfg | ||
*.egg | ||
MANIFEST | ||
|
||
# PyInstaller | ||
# Usually these files are written by a python script from a template | ||
# before PyInstaller builds the exe, so as to inject date/other infos into it. | ||
*.manifest | ||
*.spec | ||
|
||
# Installer logs | ||
pip-log.txt | ||
pip-delete-this-directory.txt | ||
|
||
# Unit test / coverage reports | ||
htmlcov/ | ||
.tox/ | ||
.coverage | ||
.coverage.* | ||
.cache | ||
nosetests.xml | ||
coverage.xml | ||
*.cover | ||
.hypothesis/ | ||
|
||
# Translations | ||
*.mo | ||
*.pot | ||
|
||
# Django stuff: | ||
*.log | ||
.static_storage/ | ||
.media/ | ||
local_settings.py | ||
|
||
# Flask stuff: | ||
instance/ | ||
.webassets-cache | ||
|
||
# Scrapy stuff: | ||
.scrapy | ||
|
||
# Sphinx documentation | ||
docs/_build/ | ||
|
||
# PyBuilder | ||
target/ | ||
|
||
# Jupyter Notebook | ||
.ipynb_checkpoints | ||
|
||
# pyenv | ||
.python-version | ||
|
||
# celery beat schedule file | ||
celerybeat-schedule | ||
|
||
# SageMath parsed files | ||
*.sage.py | ||
|
||
# Environments | ||
.env | ||
.venv | ||
env/ | ||
venv/ | ||
ENV/ | ||
env.bak/ | ||
venv.bak/ | ||
|
||
# Spyder project settings | ||
.spyderproject | ||
.spyproject | ||
|
||
# Rope project settings | ||
.ropeproject | ||
|
||
# mkdocs documentation | ||
/site | ||
|
||
# mypy | ||
.mypy_cache/ |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,2 @@ | ||
* | ||
!.gitignore |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,2 @@ | ||
* | ||
!.gitignore |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,178 @@ | ||
import os | ||
import sys | ||
import scipy.misc | ||
import pprint | ||
import numpy as np | ||
import time | ||
import tensorflow as tf | ||
import tensorlayer as tl | ||
from glob import glob | ||
from random import shuffle | ||
from tensorlayer.layers import * | ||
from utils import * | ||
from network import * | ||
|
||
pp = pprint.PrettyPrinter() | ||
|
||
""" | ||
TensorLayer implementation of DCGAN to generate face image. | ||
Usage : see README.md | ||
""" | ||
|
||
flags = tf.app.flags | ||
flags.DEFINE_integer("epoch", 100, "Epoch to train [25]") | ||
flags.DEFINE_float("learning_rate", 0.0002, "Learning rate of for adam [0.0002]") | ||
flags.DEFINE_float("beta1", 0.5, "Momentum term of adam [0.5]") | ||
flags.DEFINE_integer("train_size", np.inf, "The size of train images [np.inf]") | ||
flags.DEFINE_integer("batch_size", 1, "The number of batch images [64]") | ||
flags.DEFINE_integer("image_size", 256, "The size of image to use (will be center cropped) [108]") | ||
flags.DEFINE_integer("output_size", 256, "The size of the output images to produce [64]") | ||
flags.DEFINE_integer("sample_size", 64, "The number of sample images [64]") | ||
flags.DEFINE_integer("c_dim", 3, "Dimension of image color. [3]") | ||
flags.DEFINE_integer("sample_step", 500, "The interval of generating sample. [500]") | ||
flags.DEFINE_integer("save_step", 50, "The interval of saveing checkpoints. [500]") | ||
flags.DEFINE_string("dataset", "uc_train_256_data", "The name of dataset [celebA, mnist, lsun]") | ||
flags.DEFINE_string("checkpoint_dir", "checkpoint", "Directory name to save the checkpoints [checkpoint]") | ||
flags.DEFINE_string("sample_dir", "samples", "Directory name to save the image samples [samples]") | ||
flags.DEFINE_string("feature_dir", "features", "Directory name to save features") | ||
flags.DEFINE_boolean("is_train", False, "True for training, False for testing [False]") | ||
flags.DEFINE_boolean("is_crop", False, "True for training, False for testing [False]") | ||
flags.DEFINE_boolean("visualize", False, "True for visualizing, False for nothing [False]") | ||
FLAGS = flags.FLAGS | ||
|
||
|
||
|
||
def main(_): | ||
pp.pprint(flags.FLAGS.__flags) | ||
|
||
if not os.path.exists(FLAGS.checkpoint_dir): | ||
os.makedirs(FLAGS.checkpoint_dir) | ||
if not os.path.exists(FLAGS.sample_dir): | ||
os.makedirs(FLAGS.sample_dir) | ||
|
||
|
||
# with tf.device("/gpu:0"): # <-- if you have a GPU machine | ||
real_images = tf.placeholder(tf.float32, [FLAGS.batch_size, FLAGS.output_size, FLAGS.output_size, FLAGS.c_dim], name='real_images') | ||
|
||
# z --> generator for training | ||
|
||
|
||
net_d, d_logits, features = discriminator_simplified_api(real_images, is_train=FLAGS.is_train, reuse=False) | ||
|
||
|
||
sess=tf.Session() | ||
tl.ops.set_gpu_fraction(sess=sess, gpu_fraction=0.88) | ||
sess.run(tf.initialize_all_variables()) | ||
|
||
# load checkpoints | ||
print("[*] Loading checkpoints...") | ||
model_dir = "%s_%s_%s" % (FLAGS.dataset, 64, FLAGS.output_size) | ||
save_dir = os.path.join(FLAGS.checkpoint_dir, model_dir) | ||
#print save_dir | ||
# load the latest checkpoints | ||
nums = [75] | ||
for num in nums: | ||
net_g_name = os.path.join(save_dir, '%dnet_g.npz'%num) | ||
net_d_name = os.path.join(save_dir, '%dnet_d.npz'%num) | ||
|
||
print net_g_name, net_d_name | ||
|
||
if not (os.path.exists(net_g_name) and os.path.exists(net_d_name)): | ||
print("[!] Loading checkpoints failed!") | ||
else: | ||
net_d_loaded_params = tl.files.load_npz(name=net_d_name) | ||
tl.files.assign_params(sess, net_d_loaded_params, net_d) | ||
print("[*] Loading checkpoints SUCCESS!") | ||
|
||
NUM_STYLE_LABELS = 21 | ||
style_label_file = './style_names.txt' | ||
style_labels = list(np.loadtxt(style_label_file, str, delimiter='\n')) | ||
if NUM_STYLE_LABELS > 0: | ||
style_labels = style_labels[:NUM_STYLE_LABELS] | ||
|
||
|
||
if not os.path.exists(FLAGS.feature_dir): | ||
os.makedirs(FLAGS.feature_dir) | ||
|
||
print 'extract traning feature' | ||
|
||
data_files = glob(os.path.join("./data", 'uc_train_256_feat', "*.jpg")) | ||
shuffle(data_files) | ||
|
||
|
||
batch_idxs = min(len(data_files), FLAGS.train_size) // FLAGS.batch_size | ||
|
||
lens = batch_idxs*FLAGS.batch_size | ||
|
||
|
||
y = np.zeros(lens, dtype=np.uint8) | ||
for i in xrange(lens): | ||
for j in xrange(len(style_labels)): | ||
if style_labels[j] in data_files[i]: | ||
y[i] = j | ||
break | ||
|
||
feats = np.zeros((lens, 14336)) | ||
|
||
for idx in xrange(batch_idxs): | ||
batch_files = data_files[idx*FLAGS.batch_size:(idx+1)*FLAGS.batch_size] | ||
# get real images | ||
batch = [get_image(batch_file, FLAGS.image_size, is_crop=FLAGS.is_crop, resize_w=FLAGS.output_size, is_grayscale = 0) for batch_file in batch_files] | ||
batch_images = np.array(batch).astype(np.float32) | ||
# update sample files based on shuffled data | ||
#img, errG = sess.run([net_g2.outputs, g_loss], feed_dict={z : sample_seed}) | ||
feat = sess.run(features, feed_dict={real_images: batch_images}) | ||
|
||
#print feat.shape | ||
|
||
begin = FLAGS.batch_size*idx | ||
end = FLAGS.batch_size + begin | ||
feats[begin:end, ...] = feat | ||
|
||
np.save('features/features%d_train.npy'%num, feats) | ||
np.save('features/label%d_train.npy'%num, y) | ||
|
||
print 'extract testing feature' | ||
data_files = glob(os.path.join("./data", 'uc_test_256', "*.jpg")) | ||
shuffle(data_files) | ||
#data_files = data_files[0:5000] | ||
|
||
|
||
batch_idxs = min(len(data_files), FLAGS.train_size) // FLAGS.batch_size | ||
|
||
lens = batch_idxs*FLAGS.batch_size | ||
|
||
|
||
y = np.zeros(lens, dtype=np.uint8) | ||
for i in xrange(lens): | ||
for j in xrange(len(style_labels)): | ||
if style_labels[j] in data_files[i]: | ||
y[i] = j | ||
break | ||
|
||
feats = np.zeros((lens, 14336)) | ||
|
||
|
||
for idx in xrange(batch_idxs): | ||
batch_files = data_files[idx*FLAGS.batch_size:(idx+1)*FLAGS.batch_size] | ||
|
||
batch = [get_image(batch_file, FLAGS.image_size, is_crop=FLAGS.is_crop, resize_w=FLAGS.output_size, is_grayscale = 0) for batch_file in batch_files] | ||
batch_images = np.array(batch).astype(np.float32) | ||
# update sample files based on shuffled data | ||
#img, errG = sess.run([net_g2.outputs, g_loss], feed_dict={z : sample_seed}) | ||
feat = sess.run(features, feed_dict={real_images: batch_images}) | ||
|
||
begin = FLAGS.batch_size*idx | ||
end = FLAGS.batch_size + begin | ||
feats[begin:end, ...] = feat | ||
|
||
#print idx | ||
|
||
np.save('features/features%d_test.npy'%num, feats) | ||
np.save('features/label%d_test.npy'%num, y) | ||
|
||
|
||
|
||
if __name__ == '__main__': | ||
tf.app.run() |
Oops, something went wrong.