usage: extract_features.py [-h] [-s SUBJECT] [-d DEVICE] [-r RAND_SEED] [-b BATCH_SIZE] [-n N_COMPONENTS]
[-v VALIDATION_RATIO] [-p DATA_PATH] [-o OUTPUT_PATH]
Extracts features from all ConvNeXt Blocks in the pretrained ConvNeXt-T and performs Incremental PCA
options:
-h, --help show this help message and exit
-s SUBJECT, --subject SUBJECT
select one subject (default: 8)
-d DEVICE, --device DEVICE
torch device (default: cuda)
-r RAND_SEED, --rand_seed RAND_SEED
random seed (default: 5)
-b BATCH_SIZE, --batch_size BATCH_SIZE
batch size (default: 128)
-n N_COMPONENTS, --n_components N_COMPONENTS
pca n_components, must be less or equal to the batch number of samples (default: 128)
-v VALIDATION_RATIO, --validation_ratio VALIDATION_RATIO
ratio for validation (default: 0.1)
-p DATA_PATH, --data_path DATA_PATH
path of algonauts 2023 challenge data (default: algonauts_2023_challenge_data)
-o OUTPUT_PATH, --output_path OUTPUT_PATH
output path of features (default: algonauts_2023_features_concatenated)
usage: linear_regression.py [-h] [-s SUBJECT] [-f FEATURES_PATH] [-o OUTPUT_PATH]
Use Linear Regression for fMRI data prediction
options:
-h, --help show this help message and exit
-s SUBJECT, --subject SUBJECT
select one subject (default: 8)
-f FEATURES_PATH, --features_path FEATURES_PATH
features path (default: algonauts_2023_features_concatenated)
-o OUTPUT_PATH, --output_path OUTPUT_PATH
fmri prediction output path (default: algonauts_2023_challenge_submission)
usage: multilayer_perceptron_submission.py [-h] [-s SUBJECT] [-d DEVICE] [-f FEATURES_PATH] [-o OUTPUT_PATH]
Use Multilayer Perceptron for fMRI data prediction
options:
-h, --help show this help message and exit
-s SUBJECT, --subject SUBJECT
select one subject (default: 8)
-d DEVICE, --device DEVICE
torch device (default: cuda)
-f FEATURES_PATH, --features_path FEATURES_PATH
features path (default: algonauts_2023_features_concatenated)
-o OUTPUT_PATH, --output_path OUTPUT_PATH
fmri prediction output path (default: algonauts_2023_challenge_submission)