forked from graphnet-team/graphnet
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge branch 'main' into display_current_learning_rate
- Loading branch information
Showing
8 changed files
with
285 additions
and
13 deletions.
There are no files selected for viewing
Binary file modified
BIN
+3 Bytes
(100%)
data/tests/deployment/QUESO/upgrade_genie_step4_140028_000998_first_5_frames.i3.gz
Binary file not shown.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,98 @@ | ||
"""Module containing EdgeDefinitions based on the Minkowski Metric.""" | ||
from typing import Optional, List | ||
|
||
import torch | ||
from torch_geometric.data import Data | ||
from torch_geometric.utils import to_dense_batch | ||
from graphnet.models.graphs.edges.edges import EdgeDefinition | ||
|
||
|
||
def compute_minkowski_distance_mat( | ||
x: torch.Tensor, | ||
y: torch.Tensor, | ||
c: float, | ||
space_coords: Optional[List[int]] = None, | ||
time_coord: Optional[int] = 3, | ||
) -> torch.Tensor: | ||
"""Compute all pairwise Minkowski distances. | ||
Args: | ||
x: First tensor of shape (n, d). | ||
y: Second tensor of shape (m, d). | ||
c: Speed of light, in scaled units. | ||
space_coords: Indices of space coordinates. | ||
time_coord: Index of time coordinate. | ||
Returns: Matrix of shape (n, m) of all pairwise Minkowski distances. | ||
""" | ||
space_coords = space_coords or [0, 1, 2] | ||
assert x.dim() == 2, "x must be 2-dimensional" | ||
assert y.dim() == 2, "x must be 2-dimensional" | ||
dist = x[:, None] - y[None, :] | ||
pos = dist[:, :, space_coords] | ||
time = dist[:, :, time_coord] * c | ||
return (pos**2).sum(dim=-1) - time**2 | ||
|
||
|
||
class MinkowskiKNNEdges(EdgeDefinition): | ||
"""Builds edges between most light-like separated.""" | ||
|
||
def __init__( | ||
self, | ||
nb_nearest_neighbours: int, | ||
c: float, | ||
time_like_weight: float = 1.0, | ||
space_coords: Optional[List[int]] = None, | ||
time_coord: Optional[int] = 3, | ||
): | ||
"""Initialize MinkowskiKNNEdges. | ||
Args: | ||
nb_nearest_neighbours: Number of neighbours to connect to. | ||
c: Speed of light, in scaled units. | ||
time_like_weight: Preference to time-like over space-like edges. | ||
Scales time_like distances by this value, before finding | ||
nearest neighbours. | ||
space_coords: Coordinates of x, y, z. | ||
time_coord: Coordinate of time. | ||
""" | ||
super().__init__(name=__name__, class_name=self.__class__.__name__) | ||
self.nb_nearest_neighbours = nb_nearest_neighbours | ||
self.c = c | ||
self.time_like_weight = time_like_weight | ||
self.space_coords = space_coords or [0, 1, 2] | ||
self.time_coord = time_coord | ||
|
||
def _construct_edges(self, graph: Data) -> Data: | ||
x, mask = to_dense_batch(graph.x, graph.batch) | ||
count = 0 | ||
row = [] | ||
col = [] | ||
for batch in range(x.shape[0]): | ||
distance_mat = compute_minkowski_distance_mat( | ||
x_masked := x[batch][mask[batch]], | ||
x_masked, | ||
self.c, | ||
self.space_coords, | ||
self.time_coord, | ||
) | ||
num_points = x_masked.shape[0] | ||
num_edges = min(self.nb_nearest_neighbours, num_points) | ||
col += [ | ||
c | ||
for c in range(num_points) | ||
for _ in range(count, count + num_edges) | ||
] | ||
distance_mat[distance_mat < 0] *= -self.time_like_weight | ||
distance_mat += ( | ||
torch.eye(distance_mat.shape[0]) * 1e9 | ||
) # self-loops | ||
distance_sorted = distance_mat.argsort(dim=1) | ||
distance_sorted += count # offset by previous events | ||
row += distance_sorted[:num_edges].flatten().tolist() | ||
count += num_points | ||
|
||
graph.edge_index = torch.tensor( | ||
[row, col], dtype=torch.long, device=graph.x.device | ||
) | ||
return graph |
Binary file modified
BIN
-1.56 KB
(100%)
...etrained/icecube/upgrade/QUESO/total_neutrino_energy/total_neutrino_energy_state_dict.pth
Binary file not shown.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,160 @@ | ||
"""Unit tests for minkowski based edges.""" | ||
import pytest | ||
import torch | ||
from torch_geometric.data.data import Data | ||
|
||
from graphnet.models.graphs.edges import KNNEdges, MinkowskiKNNEdges | ||
from graphnet.models.graphs.edges.minkowski import ( | ||
compute_minkowski_distance_mat, | ||
) | ||
|
||
|
||
def test_compute_minkowski_distance_mat() -> None: | ||
"""Testing the computation of the Minkowski distance matrix.""" | ||
vec1 = torch.tensor( | ||
[ | ||
[ | ||
0.0, | ||
0.0, | ||
0.0, | ||
0.0, | ||
], | ||
[ | ||
0.0, | ||
0.0, | ||
1.0, | ||
1.0, | ||
], | ||
[ | ||
1.0, | ||
0.0, | ||
0.0, | ||
1.0, | ||
], | ||
[ | ||
1.0, | ||
0.0, | ||
1.0, | ||
2.0, | ||
], | ||
] | ||
) | ||
vec2 = torch.tensor( | ||
[ | ||
[ | ||
0.0, | ||
0.0, | ||
0.0, | ||
-1.0, | ||
], | ||
[ | ||
1.0, | ||
1.0, | ||
1.0, | ||
0.0, | ||
], | ||
] | ||
) | ||
expected11 = torch.tensor( | ||
[ | ||
[ | ||
0.0, | ||
0.0, | ||
0.0, | ||
-2.0, | ||
], | ||
[ | ||
0.0, | ||
0.0, | ||
2.0, | ||
0.0, | ||
], | ||
[ | ||
0.0, | ||
2.0, | ||
0.0, | ||
0.0, | ||
], | ||
[ | ||
-2.0, | ||
0.0, | ||
0.0, | ||
0.0, | ||
], | ||
] | ||
) | ||
expected12 = torch.tensor( | ||
[[-1.0, 3.0], [-3.0, 1.0], [-3.0, 1.0], [-7.0, -3.0]] | ||
) | ||
expected22 = torch.tensor( | ||
[ | ||
[0.0, 2.0], | ||
[2.0, 0.0], | ||
] | ||
) | ||
mat11 = compute_minkowski_distance_mat(vec1, vec1, c=1.0) | ||
mat12 = compute_minkowski_distance_mat(vec1, vec2, c=1.0) | ||
mat22 = compute_minkowski_distance_mat(vec2, vec2, c=1.0) | ||
|
||
assert torch.allclose(mat11, expected11) | ||
assert torch.allclose(mat12, expected12) | ||
assert torch.allclose(mat22, expected22) | ||
|
||
|
||
def test_minkowski_knn_edges() -> None: | ||
"""Testing the minkowski knn edge definition.""" | ||
data = Data( | ||
x=torch.tensor( | ||
[ | ||
[ | ||
0.0, | ||
0.0, | ||
0.0, | ||
0.0, | ||
], | ||
[ | ||
0.0, | ||
0.0, | ||
1.0, | ||
1.0, | ||
], | ||
[ | ||
1.0, | ||
0.0, | ||
0.0, | ||
1.0, | ||
], | ||
[ | ||
1.0, | ||
0.0, | ||
1.0, | ||
2.0, | ||
], | ||
] | ||
) | ||
) | ||
edge_index = MinkowskiKNNEdges( | ||
nb_nearest_neighbours=2, | ||
c=1.0, | ||
)(data).edge_index | ||
expected = torch.tensor( | ||
[ | ||
[1, 2, 0, 3, 0, 3, 1, 2], | ||
[0, 0, 1, 1, 2, 2, 3, 3], | ||
] | ||
) | ||
assert torch.allclose(edge_index[1], expected[1]) | ||
|
||
# Allow for "permutation of connections" in edge_index[1] | ||
assert torch.allclose( | ||
edge_index[0, [0, 1]], expected[0, [0, 1]] | ||
) or torch.allclose(edge_index[1, [0, 1]], expected[1, [1, 0]]) | ||
assert torch.allclose( | ||
edge_index[0, [2, 3]], expected[0, [2, 3]] | ||
) or torch.allclose(edge_index[1, [2, 3]], expected[1, [3, 2]]) | ||
assert torch.allclose( | ||
edge_index[0, [4, 5]], expected[0, [4, 5]] | ||
) or torch.allclose(edge_index[1, [4, 5]], expected[1, [5, 4]]) | ||
assert torch.allclose( | ||
edge_index[0, [6, 7]], expected[0, [6, 7]] | ||
) or torch.allclose(edge_index[1, [6, 7]], expected[1, [7, 6]]) |