Skip to content

Commit

Permalink
Accepted
Browse files Browse the repository at this point in the history
  • Loading branch information
ramagururadhakrishnan authored Jan 26, 2024
1 parent 75cbe37 commit b5eb192
Showing 1 changed file with 233 additions and 1 deletion.
234 changes: 233 additions & 1 deletion Project_Submission/CP-03/README.md
Original file line number Diff line number Diff line change
@@ -1,3 +1,235 @@
# 19CSE201 - Advanced Programming
![](https://img.shields.io/badge/Batch-22CYS-lightgreen) ![](https://img.shields.io/badge/UG-blue) ![](https://img.shields.io/badge/Subject-AdP-blue)
![](https://img.shields.io/badge/-HPOJ-brown)
![](https://img.shields.io/badge/-HPOJ-brown)


## Matrix Calculator
```
"""
Amrita Vishwa Vidyapeetham
TIFAC-CORE in Cyber Security
19CSE201 - Advanced Programming Project
Matrix Calculator
Authors: Agil prasanna P, Deepak Kumar S, Anurag Reddy
Created Date: 16-Jan-2024
Updated Date: 21-Jan-2024
"""
#Importing necessary basic libraries
import math
import time
#A class for performing matrix operation such as scalar and matrix multiplication
#This is mainly used in concept with Compile-Time Polymorphism
#Also includes basic read and print matrix methods
class MatrixOperations:
def __init__(self, rows, columns):
self.rows = rows
self.columns = columns
self.matrix = [[0] * columns for _ in range(rows)]
def read_matrix(self):
for i in range(self.rows):
print(f"\t{self.columns} Entries for row {i + 1}:")
for j in range(self.columns):
self.matrix[i][j] = int(input())
def print_matrix(self, file):
for i in range(self.rows):
for j in range(self.columns):
print(f"\t{self.matrix[i][j]}", end="")
file.write(f"\t{self.matrix[i][j]}")
print()
file.write("\n")
# Overloading the operator '*' as Scalar Mulitplication
def __mul__(self, scalar, file):
result = MatrixOperations(self.rows, self.columns)
file.write("\n\tScalar Matrix: \n")
for i in range(self.rows):
for j in range(self.columns):
result.matrix[i][j] = scalar * self.matrix[i][j]
print()
file.write("\n")
return result
# Overloading the operator '@' as Scalar Mulitplication
def __matmul__(self, other, file):
if self.columns != other.rows:
print("\nMatrix dimensions incompatible for multiplication\n")
file.write("\nMatrix dimensions incompatible for multiplication\n")
file.write("\n\tMatrix Multiplication: \n")
result = MatrixOperations(self.rows, other.columns)
for i in range(self.rows):
for j in range(other.columns):
for k in range(self.columns):
result.matrix[i][j] += self.matrix[i][k] * other.matrix[k][j]
return result
#Multiple functions such as determinant,cofactor,transpose inorder to calculate Inverse of a matrix (Outside the class)
def determinant(arrayone, k):
s = 1
det = 0
arraytwo = [[0] * 10 for _ in range(10)]
if k == 1:
return arrayone[0][0]
else:
for c in range(k):
m = 0
n = 0
for i in range(k):
for j in range(k):
arraytwo[i][j] = 0
if i != 0 and j != c:
arraytwo[m][n] = arrayone[i][j]
if n < (k - 2):
n += 1
else:
n = 0
m += 1
det = det + s * (arrayone[0][c] * determinant(arraytwo, k - 1))
s = -1 * s
return det
def cofactor(num, f, file):
arraytwo = [[0] * 10 for _ in range(10)]
fac = [[0] * 10 for _ in range(10)]
for q in range(f):
for p in range(f):
m = 0
n = 0
for i in range(f):
for j in range(f):
if i != q and j != p:
arraytwo[m][n] = num[i][j]
if n < (f - 2):
n += 1
else:
n = 0
m += 1
fac[q][p] = math.pow(-1, q + p) * determinant(arraytwo, f - 1)
transpose(num, fac, f, file)
def transpose(num, fac, r, file):
arraytwo = [[0] * 10 for _ in range(10)]
inverse = [[0] * 10 for _ in range(10)]
d = determinant(num, r)
for i in range(r):
for j in range(r):
arraytwo[i][j] = fac[j][i]
for i in range(r):
for j in range(r):
inverse[i][j] = arraytwo[i][j] / d
print("The Inverse of the matrix: ")
file.write("\nThe Inverse of the matrix: \n")
for i in range(r):
for j in range(r):
print(f"\t{inverse[i][j]}", end="")
file.write(f"\t{inverse[i][j]}")
print()
file.write("\n")
file.write("\n")
file.write("----------------------------------------------------------------------------------------------------------------------------------------------------------------------\n")
#Main function for clarity
def main():
again = 'Y'
# Time Stamp
currentTime = time.time()
timeInfo = time.localtime(currentTime)
buffer = time.strftime("%Y-%m-%d %H:%M:%S", timeInfo)
# To record all the operations performed using the calculator in a "time.txt" file
file = open("time.txt", "a")
if file is None:
print("Unable to open the file.")
return 1
#Calculator Menu using Color codes for better interactivity
while again == 'Y':
print("\n\t\t\t\t\t\tWELCOME TO THE MATRIX CALCULATOR")
print("\t\t\t\t\t\t~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~")
print("Operation Menu")
print("==============")
print("\t1. Scalar Multiply")
print("\t2. Multiply two matrices (Matrix Multiplication)")
print("\t3. Find inverse of a matrix")
operation = int(input("Enter your choice: "))
if operation == 1:
file.write(f"\n{buffer}\n")
scalar = int(input("Enter the scalar: "))
file.write(f"The scalar is : {scalar}\n")
print(f"The scalar is: {scalar}")
rowA, colA = map(int, input("Enter the #rows and #cols for matrix A: ").split())
matrixA = MatrixOperations(rowA, colA)
print(f"\nEnter elements of Matrix A ({rowA} x {colA}) matrix.")
matrixA.read_matrix()
print("\n\tMatrix A\n\n")
file.write("\n\tMatrix A\n\n")
matrixA.print_matrix(file)
print(f"\nThe scalar multiplication between matrix A * ({scalar}) is: ")
result = matrixA.__mul__(scalar, file)
result.print_matrix(file)
file.write("\n----------------------------------------------------------------------------------------------------------------------------------------------------------------------\n")
elif operation == 2:
rowA, colA = map(int, input("Enter the #rows and #cols for matrix A: ").split())
print("Enter the #rows and #cols for matrix B: ")
rowB, colB = map(int, input().split())
print(f"\nEnter elements of Matrix A ({rowA} x {colA}) matrix.")
matrixA = MatrixOperations(rowA, colA)
matrixA.read_matrix()
file.write(f"\n{buffer}\n")
print("\n\tMatrix A\n\n")
file.write("\n\tMatrix A\n\n")
matrixA.print_matrix(file)
print(f"\nEnter elements of Matrix B ({rowB} x {colB}) matrix.")
matrixB = MatrixOperations(rowB, colB)
matrixB.read_matrix()
print("\n\tMatrix B\n\n")
file.write("\n\tMatrix B\n\n")
matrixB.print_matrix(file)
result = matrixA.__matmul__(matrixB, file)
print("Resultant Matrix:")
file.write("\n\tResultant Matrix\n\n")
result.print_matrix(file)
file.write("\n----------------------------------------------------------------------------------------------------------------------------------------------------------------------\n")
elif operation == 3:
matrixA = [[0] * 10 for _ in range(10)]
rowA, colA = map(int, input("Enter the #rows and #cols for matrix A:\n ").split())
while rowA != colA:
print("\033[31m")
print("\n\tThe Input matrix should be 'n x n' matrix.")
print("\033[0m")
rowA, colA = map(int, input("Enter the #rows and #cols for matrix A: ").split())
print(f"\n\tEnter elements of Matrix A a {rowA} x {colA} matrix.")
for i in range(rowA):
for j in range(colA):
matrixA[i][j] = float(input())
file.write(f"\n{buffer}\n")
file.write("\n\tMatrix A\t\n")
print("\n\tMatrix A\t\n")
for i in range(rowA):
for j in range(colA):
print(f"\t{matrixA[i][j]}", end="")
file.write(f"\t{matrixA[i][j]}")
print()
file.write("\n")
d = determinant(matrixA, rowA)
if d == 0:
print("\033[31m")
print("\n The Determinant of the input matrix is zero (0), therefore inverse does not exist.\n")
print("\033[0m")
file.write("\n The Determinant of the input matrix is zero (0), therefore inverse does not exist.\n")
file.write("\n----------------------------------------------------------------------------------------------------------------------------------------------------------------------\n")
else:
cofactor(matrixA, rowA, file)
else:
print("\033[31m\nIncorrect option!. Please choose a number 1-3.\033[0m")
print("\n\nDo you want to calculate again? ")
again = input("\033[32mY\033[0m or \033[31mN\033[0m: ").upper()
print("\033[32m\nThank You for using our matrix calculator. Have a nice day!!\n\033[0m")
file.close()
if __name__ == "__main__":
main()
```

0 comments on commit b5eb192

Please sign in to comment.