Skip to content

Repository for uploading projects covered in 2021-2 basic AI class

Notifications You must be signed in to change notification settings

AlphaTechnic/2021-2_AI_course_proj

Repository files navigation

Basic AI lecture in 2021-2 semester

  • Learning a Basic AI course in 2021-2 semester
  • Reference - Russell, S. and Norvig, P. (2021). Artificial Intelligence: A Modern Approach (4th edition). Pearson.
  • using python

pj1. maze

image-20210923191608500

stage1 - bfs vs astar

size bfs (path 길이 / search states) astar (path 길이 / search states)
small 9 / 16 9 / 14
medium 69 / 274 69 / 221
big 211 / 647 211 / 548

stage2 - heuristic function using manhatten dist vs using path length

metric mst using manhatten dist as edge cost -- (1) mst using path length as edge cost -- (2)
state 개수 1901 (stage2 - big.txt 기준) 49 (stage2 - big.txt 기준)
수행시간 0.049 sec (stage2 - big.txt 기준) 1.126 sec (stage2 - big.txt 기준)
stage3 - big size 해결 못함 해결 함

pj2. pacman

image-20210923191608500

image-20210923191608500

정리

minimax alphabeta
iteration 300, smallmap, depth=2 Tot = 48.28
Avg = 0.16
Tot = 40.82
Avg = 0.13
iteration 300, mediummap, depth=2 Tot = 121.16
Avg = 0.403
Tot = 99.17
Avg = 0.33
iteration 1000, minimaxmap, depth=4 Tot = 75.23
Avg = 0.07
Tot = 41.55
Avg = 0.04

=> alphabeta agent가 minimax agent보다 효율적임을 알 수 있다. depth를 깊게 실험해보면, alphabeta agent의 pruning 효과가 더욱 극명하다.

pj3. logical agent

image-20210923191608500

image-20210923191608500

pj4. MLP vs CNN

image-20210923191608500

image-20210923191608500

About

Repository for uploading projects covered in 2021-2 basic AI class

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published