由于目前处于Deadline时期,要等下个礼拜才有时间把完整的整个流程在Github上分享一下,现在只能先用中文简单描述一下整个流程:从Darknet 框架中的YOLOv2模型到最终生成bitstream的过程。
(1)需要先从Darknet官网下载darknet框架,然后将其中YOLOv2的权重提取出来。由于YOLOv2的卷积层基本都会跟着BatchNormalization,所以在提取权重的过程中,就将YOLOv2中的weight和bias分别和对应的BN乘在一起具体公式可以参考文献[1],公式如下:
y=(x-bn0)/sqrt(bn1) (1)
z=sc0y+sc1 (2)
所以,可以将(1)与(2)合并,得到:
y=Ax+B (3)
其中 A= sc0/sqpr(bn1), B=sc1-sc0*bn0/sqrt(bn1)
这部分代码放在framework目录下
-
Notifications
You must be signed in to change notification settings - Fork 0
At present, just an example to show how to map the detection algorithm YOLOv2 from model to FPGA
License
Ajfil/Xilinx_FPGA_HLS-Mapping-Neural-Network-to-Hardware
Folders and files
Name | Name | Last commit message | Last commit date | |
---|---|---|---|---|
Repository files navigation
About
At present, just an example to show how to map the detection algorithm YOLOv2 from model to FPGA
Resources
License
Stars
Watchers
Forks
Releases
No releases published
Packages 0
No packages published