Skip to content

Commit

Permalink
docs: add Camel AI integration documentation (#573)
Browse files Browse the repository at this point in the history
* docs: add Camel AI integration documentation

Add comprehensive Camel AI integration support:
- Add integration page in docs
- Update README with Camel AI framework
- Add example notebook and verification script
- Update mint.json navigation

Note: Documentation and examples have been verified for:
- Package installation
- Import compatibility
- Code syntax and structure

Testing limitations:
- Full execution testing requires API keys
- Example notebook execution pending API access

Closes #521

Co-Authored-By: Alex Reibman <[email protected]>

* style: fix Python formatting in Camel example files

Co-Authored-By: Alex Reibman <[email protected]>

* style: fix Python formatting in Camel example files

Co-Authored-By: Alex Reibman <[email protected]>

* style: fix Python formatting in Camel example files

Co-Authored-By: Alex Reibman <[email protected]>

* fix: update Camel AI integration with working analytics and examples

Co-Authored-By: Alex Reibman <[email protected]>

* style: fix Python formatting in Camel example files

Co-Authored-By: Alex Reibman <[email protected]>

* fix: address PR comments for Camel AI integration

Co-Authored-By: Alex Reibman <[email protected]>

* docs: update CAMEL example with multi-agent interaction

Co-Authored-By: Alex Reibman <[email protected]>

---------

Co-authored-by: Devin AI <158243242+devin-ai-integration[bot]@users.noreply.github.com>
Co-authored-by: Alex Reibman <[email protected]>
  • Loading branch information
devin-ai-integration[bot] and areibman authored Dec 13, 2024
1 parent 222cf85 commit a03e45a
Show file tree
Hide file tree
Showing 4 changed files with 382 additions and 2 deletions.
61 changes: 60 additions & 1 deletion README.md
Original file line number Diff line number Diff line change
Expand Up @@ -58,7 +58,7 @@ AgentOps helps developers build, evaluate, and monitor AI agents. From prototype
| 💸 **LLM Cost Management** | Track spend with LLM foundation model providers |
| 🧪 **Agent Benchmarking** | Test your agents against 1,000+ evals |
| 🔐 **Compliance and Security** | Detect common prompt injection and data exfiltration exploits |
| 🤝 **Framework Integrations** | Native Integrations with CrewAI, AutoGen, & LangChain |
| 🤝 **Framework Integrations** | Native Integrations with CrewAI, AutoGen, Camel AI, & LangChain |

## Quick Start ⌨️

Expand Down Expand Up @@ -177,6 +177,65 @@ With only two lines of code, add full observability and monitoring to Autogen ag
- [Autogen Observability Example](https://microsoft.github.io/autogen/docs/notebooks/agentchat_agentops)
- [Autogen - AgentOps Documentation](https://microsoft.github.io/autogen/docs/ecosystem/agentops)

### Camel AI 🐪

Track and analyze CAMEL agents with full observability. Set an `AGENTOPS_API_KEY` in your environment and initialize AgentOps to get started.

- [Camel AI](https://www.camel-ai.org/) - Advanced agent communication framework
- [AgentOps integration example](https://docs.agentops.ai/v1/integrations/camel)
- [Official Camel AI documentation](https://docs.camel-ai.org/cookbooks/agents_tracking.html)

<details>
<summary>Installation</summary>

```bash
pip install "camel-ai[all]==0.2.11"
pip install agentops
```

```python
import os
import agentops
from camel.agents import ChatAgent
from camel.messages import BaseMessage
from camel.models import ModelFactory
from camel.types import ModelPlatformType, ModelType

# Initialize AgentOps
agentops.init(os.getenv("AGENTOPS_API_KEY"), default_tags=["CAMEL Example"])

# Import toolkits after AgentOps init for tracking
from camel.toolkits import SearchToolkit

# Set up the agent with search tools
sys_msg = BaseMessage.make_assistant_message(
role_name='Tools calling operator',
content='You are a helpful assistant'
)

# Configure tools and model
tools = [*SearchToolkit().get_tools()]
model = ModelFactory.create(
model_platform=ModelPlatformType.OPENAI,
model_type=ModelType.GPT_4O_MINI,
)

# Create and run the agent
camel_agent = ChatAgent(
system_message=sys_msg,
model=model,
tools=tools,
)

response = camel_agent.step("What is AgentOps?")
print(response)

agentops.end_session("Success")
```

Check out our [Camel integration guide](https://docs.agentops.ai/v1/integrations/camel) for more examples including multi-agent scenarios.
</details>

### Langchain 🦜🔗

AgentOps works seamlessly with applications built using Langchain. To use the handler, install Langchain as an optional dependency:
Expand Down
3 changes: 2 additions & 1 deletion docs/mint.json
Original file line number Diff line number Diff line change
Expand Up @@ -17,7 +17,7 @@
"anchors": {
"from": "#D1E5F7",
"to": "#a9bed4"

}
},
"topbarCtaButton": {
Expand Down Expand Up @@ -90,6 +90,7 @@
"v1/integrations/ai21",
"v1/integrations/anthropic",
"v1/integrations/autogen",
"v1/integrations/camel",
"v1/integrations/cohere",
"v1/integrations/crewai",
"v1/integrations/groq",
Expand Down
148 changes: 148 additions & 0 deletions docs/v1/integrations/camel.mdx
Original file line number Diff line number Diff line change
@@ -0,0 +1,148 @@
---
title: 'Camel AI'
description: 'Track and analyze CAMEL agents including LLMs and Tools usage with AgentOps'
---

import CodeTooltip from '/snippets/add-code-tooltip.mdx'
import EnvTooltip from '/snippets/add-env-tooltip.mdx'

[CAMEL](https://www.camel-ai.org/) is the first large language model (LLM) multi-agent framework and an open-source community dedicated to finding the scaling law of agents. CAMEL has comprehensive [documentation](https://docs.camel-ai.org/) available as well as a great [quickstart](https://docs.camel-ai.org/getting_started/installation.html) guide.

## Adding AgentOps to CAMEL agents

<Steps>
<Step title="Install the AgentOps SDK">
<CodeGroup>
```bash pip
pip install agentops
```
```bash poetry
poetry add agentops
```
</CodeGroup>
</Step>
<Step title="Install CAMEL">
<CodeGroup>
```bash pip
pip install "camel-ai[all]==0.2.11"
```
```bash poetry
poetry add "camel-ai[all]==0.2.11"
```
</CodeGroup>
</Step>
<Step title="Add 3 lines of code">
<CodeTooltip/>
<CodeGroup>
```python python
import agentops
agentops.init(<INSERT YOUR API KEY HERE>)
...
# MUST END SESSION at end of program
agentops.end_session("Success") # Success|Fail|Indeterminate
```
</CodeGroup>
<EnvTooltip />
<CodeGroup>
```python .env
AGENTOPS_API_KEY=<YOUR API KEY>
```
</CodeGroup>
Read more about environment variables in [Advanced Configuration](/v1/usage/advanced-configuration)
</Step>
<Step title="Run your agent">
Execute your program and visit [app.agentops.ai/drilldown](https://app.agentops.ai/drilldown) to observe your CAMEL Agent! 🕵️
<Tip>
After your run, AgentOps prints a clickable url to console linking directly to your session in the Dashboard
</Tip>
<div/>{/* Intentionally blank div for newline */}
<Frame type="glass" caption="Clickable link to session">
<img height="200" src="https://github.com/AgentOps-AI/agentops/blob/main/docs/images/link-to-session.gif?raw=true" />
</Frame>
</Step>
</Steps>

## Single Agent Example with Tools

Here's a simple example of tracking a CAMEL single agent with tools using AgentOps:

```python
import agentops
import os
from camel.agents import ChatAgent
from camel.messages import BaseMessage
from camel.models import ModelFactory
from camel.types import ModelPlatformType, ModelType

# Initialize AgentOps
agentops.init(os.getenv("AGENTOPS_API_KEY"))

# Import toolkits after AgentOps init for tracking
from camel.toolkits import SearchToolkit

# Set up the agent with search tools
sys_msg = BaseMessage.make_assistant_message(
role_name='Tools calling operator',
content='You are a helpful assistant'
)

# Configure tools and model
tools = [*SearchToolkit().get_tools()]
model = ModelFactory.create(
model_platform=ModelPlatformType.OPENAI,
model_type=ModelType.GPT_4O_MINI,
)

# Create the agent
camel_agent = ChatAgent(
system_message=sys_msg,
model=model,
tools=tools,
)

# Run the agent
user_msg = 'What is CAMEL-AI.org?'
response = camel_agent.step(user_msg)
print(response)

# End the session
agentops.end_session("Success")
```

## Multi-Agent Example

For more complex scenarios, CAMEL supports multi-agent interactions. Here's how to track multiple agents:

```python
import agentops
from typing import List
from camel.agents.chat_agent import FunctionCallingRecord
from camel.societies import RolePlaying
from camel.types import ModelPlatformType, ModelType

# Initialize AgentOps with multi-agent tag
agentops.start_session(tags=["CAMEL X AgentOps Multi-agent"])

# Import toolkits after AgentOps init
from camel.toolkits import SearchToolkit, MathToolkit

# Set up your task
task_prompt = (
"Assume now is 2024 in the Gregorian calendar, "
"estimate the current age of University of Oxford "
"and then add 10 more years to this age, "
"and get the current weather of the city where "
"the University is located."
)

# The rest of your multi-agent implementation...
# See our example notebook for the complete implementation
```

For complete examples including multi-agent setups and advanced configurations, check out our [example notebooks](https://github.com/AgentOps-AI/agentops/tree/main/examples/camel_examples).

<script type="module" src="/scripts/github_stars.js"></script>
<script type="module" src="/scripts/scroll-img-fadein-animation.js"></script>
<script type="module" src="/scripts/button_heartbeat_animation.js"></script>
<script type="css" src="/styles/styles.css"></script>
<script type="module" src="/scripts/adjust_api_dynamically.js"></script>
Loading

0 comments on commit a03e45a

Please sign in to comment.