-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathspam_classifier_deep_nn.py
82 lines (58 loc) · 2.72 KB
/
spam_classifier_deep_nn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
# -*- coding: utf-8 -*-
"""
Created on Sat Jun 30 13:23:34 2018
@author: Aditya
"""
import tensorflow as tf
import numpy as np
import warnings
warnings.filterwarnings("ignore")
from create_sentiment_features import create_feature_sets_and_labels
train_x,train_y,test_x,test_y = create_feature_sets_and_labels('spam.txt','ham.txt')
n_nodes_hl1 = 1000
n_nodes_hl2 = 1000
n_nodes_hl3 = 1000
n_classes = 2
batch_size = 100
x = tf.placeholder('float', [None, len(train_x[0])])
y = tf.placeholder('float')
def neural_network_model(data):
hidden1_layer = {'weights':tf.Variable(tf.random_normal([len(train_x[0]), n_nodes_hl1])),
'biases':tf.Variable(tf.random_normal([n_nodes_hl1]))}
hidden2_layer = {'weights':tf.Variable(tf.random_normal([n_nodes_hl1, n_nodes_hl2])),
'biases':tf.Variable(tf.random_normal([n_nodes_hl2]))}
hidden3_layer = {'weights':tf.Variable(tf.random_normal([n_nodes_hl2, n_nodes_hl3])),
'biases':tf.Variable(tf.random_normal([n_nodes_hl3]))}
output_layer = {'weights':tf.Variable(tf.random_normal([n_nodes_hl3, n_classes])),
'biases':tf.Variable(tf.random_normal([n_classes]))}
l1 = tf.add(tf.matmul(data, hidden1_layer['weights']) , hidden1_layer['biases'])
l1 = tf.nn.relu(l1)
l2 = tf.add(tf.matmul(l1, hidden2_layer['weights']) , hidden2_layer['biases'])
l2 = tf.nn.relu(l2)
l3 = tf.add(tf.matmul(l2, hidden3_layer['weights']) , hidden3_layer['biases'])
l3 = tf.nn.relu(l3)
output = tf.matmul(l3, output_layer['weights']) + output_layer['biases']
return output
def train_neural_network(x):
prediction = neural_network_model(x)
cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=prediction,labels=y))
optimizer = tf.train.AdamOptimizer().minimize(cost)
hm_epochs = 20
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
for epoch in range(hm_epochs):
epoch_loss = 0
i = 0
while i < len(train_x):
start = i
end = i + batch_size
batch_x = np.array(train_x[start:end])
batch_y = np.array(train_y[start:end])
_, c = sess.run([optimizer, cost], feed_dict ={x: batch_x, y: batch_y})
epoch_loss += c
i += batch_size
print('Epoch', epoch, 'completed out of', hm_epochs,'loss: ',epoch_loss)
correct = tf.equal(tf.argmax(prediction,1), tf.argmax(y,1))
accuracy = tf.reduce_mean(tf.cast(correct, 'float'))
print('Accuracy:',accuracy.eval({x:test_x, y:test_y}))
train_neural_network(x)