Skip to content
forked from lufficc/SSD

High quality, fast, modular reference implementation of SSD in PyTorch 1.0

License

Notifications You must be signed in to change notification settings

AI-Full-Stacker/SSD

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

35 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

High quality, fast, modular reference implementation of SSD in PyTorch 1.0

This repository implements SSD (Single Shot MultiBox Detector). The implementation is heavily influenced by the projects ssd.pytorch, pytorch-ssd and maskrcnn-benchmark. This repository aims to be the code base for researches based on SSD.

Highlights

  • PyTorch 1.0
  • GPU/CPU NMS
  • Multi-GPU training and inference
  • Modular
  • Visualization(Support Tensorboard)
  • CPU support for inference
  • Evaluating during training

Installation

Requirements

  1. Python3
  2. PyTorch 1.0
  3. yacs
  4. GCC >= 4.9
  5. OpenCV

Step-by-step installation

# First, make sure that your conda is setup properly with the right environment
# for that, check that `which conda`, `which pip` and `which python` points to the
# right path. From a clean conda env, this is what you need to do.
# But if you don't use conda, it's OK. Just pip install necessary packages.

conda create --name SSD
source activate SSD

# follow PyTorch installation in https://pytorch.org/get-started/locally/
conda install pytorch torchvision -c pytorch

pip install yacs tqdm
conda install opencv

# Optional packages
# If you want visualize loss curve. Default is enabled. Disable by using --use_tensorboard 0 when training.
pip install tensorboardX

# If you train coco dataset, must install cocoapi.
cd ~/github
git clone https://github.com/cocodataset/cocoapi.git
cd cocoapi/PythonAPI
python setup.py build_ext install

# Finally, download the pre-trained vgg weights.
wget https://s3.amazonaws.com/amdegroot-models/vgg16_reducedfc.pth

Build

# build nms, this is needed when evaluating. Only training doesn't need this.
cd ext
python build.py build_ext develop

Train

Setting Up Datasets

Pascal VOC

For Pascal VOC dataset, make the folder structure like this:

VOC_ROOT
|__ VOC2007
    |_ JPEGImages
    |_ Annotations
    |_ ImageSets
    |_ SegmentationClass
|__ VOC2012
    |_ JPEGImages
    |_ Annotations
    |_ ImageSets
    |_ SegmentationClass
|__ ...

Where VOC_ROOT default is datasets folder in current project, you can create symlinks to datasets or export VOC_ROOT="/path/to/voc_root".

COCO

For COCO dataset, make the folder structure like this:

COCO_ROOT
|__ annotations
    |_ instances_valminusminival2014.json
    |_ instances_minival2014.json
    |_ instances_train2014.json
    |_ instances_val2014.json
    |_ ...
|__ train2014
    |_ <im-1-name>.jpg
    |_ ...
    |_ <im-N-name>.jpg
|__ val2014
    |_ <im-1-name>.jpg
    |_ ...
    |_ <im-N-name>.jpg
|__ ...

Where COCO_ROOT default is datasets folder in current project, you can create symlinks to datasets or export COCO_ROOT="/path/to/coco_root".

Single GPU training

# for example, train SSD300:
python train_ssd.py --config-file configs/ssd300_voc0712.yaml --vgg vgg16_reducedfc.pth

Multi-GPU training

# for example, train SSD300 with 4 GPUs:
export NGPUS=4
python -m torch.distributed.launch --nproc_per_node=$NGPUS train_ssd.py --config-file configs/ssd300_voc0712.yaml --vgg vgg16_reducedfc.pth

The configuration files that I provide assume that we are running on single GPU. When changing number of GPUs, hyper-parameter (lr, max_iter, ...) will also changed according to this paper: Accurate, Large Minibatch SGD: Training ImageNet in 1 Hour. The pre-trained vgg weights can be downloaded here: https://s3.amazonaws.com/amdegroot-models/vgg16_reducedfc.pth.

Evaluate

Single GPU evaluating

# for example, evaluate SSD300:
python eval_ssd.py --config-file configs/ssd300_voc0712.yaml --weights /path/to/trained_ssd300_weights.pth

Multi-GPU evaluating

# for example, evaluate SSD300 with 4 GPUs:
export NGPUS=4
python -m torch.distributed.launch --nproc_per_node=$NGPUS eval_ssd.py --config-file configs/ssd300_voc0712.yaml --weights /path/to/trained_ssd300_weights.pth

Demo

Predicting image in a folder is simple:

python demo.py --config-file configs/ssd300_voc0712.yaml --weights path/to/trained/weights.pth --images_dir demo

Then the predicted images with boxes, scores and label names will saved to demo/result folder.

Currently, I provide weights trained as follows:

Weights
SSD300* ssd300_voc0712_mAP77.83.pth(100 MB)
SSD512* ssd512_voc0712_mAP80.25.pth(104 MB)

Performance

Origin Paper:

VOC2007 test coco test-dev2015
Train 07+12 trainval35k
SSD300* 77.2 25.1
SSD512* 79.8 28.8

Our Implementation:

VOC2007 test COCO 2014 minival
Train 07+12 trainval35k
SSD300* 77.8 22.9(not on test-dev2015)
SSD512* 80.2 -

Details:

VOC2007 test COCO 2014 minival
SSD300*
mAP: 0.7783
aeroplane       : 0.8252
bicycle         : 0.8445
bird            : 0.7597
boat            : 0.7102
bottle          : 0.5275
bus             : 0.8643
car             : 0.8660
cat             : 0.8741
chair           : 0.6179
cow             : 0.8279
diningtable     : 0.7862
dog             : 0.8519
horse           : 0.8630
motorbike       : 0.8515
person          : 0.8024
pottedplant     : 0.5079
sheep           : 0.7685
sofa            : 0.7926
train           : 0.8704
tvmonitor       : 0.7554
Average Precision  (AP) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.229
Average Precision  (AP) @[ IoU=0.50      | area=   all | maxDets=100 ] = 0.388
Average Precision  (AP) @[ IoU=0.75      | area=   all | maxDets=100 ] = 0.240
Average Precision  (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.068
Average Precision  (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.244
Average Precision  (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.366
Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=  1 ] = 0.231
Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets= 10 ] = 0.336
Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.368
Average Recall     (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.150
Average Recall     (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.404
Average Recall     (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.522
SSD512*
mAP: 0.8025
aeroplane       : 0.8582
bicycle         : 0.8710
bird            : 0.8192
boat            : 0.7410
bottle          : 0.5894
bus             : 0.8755
car             : 0.8856
cat             : 0.8926
chair           : 0.6589
cow             : 0.8634
diningtable     : 0.7676
dog             : 0.8707
horse           : 0.8806
motorbike       : 0.8512
person          : 0.8316
pottedplant     : 0.5238
sheep           : 0.8191
sofa            : 0.7915
train           : 0.8735
tvmonitor       : 0.7866
-

Troubleshooting

If you have issues running or compiling this code, we have compiled a list of common issues in TROUBLESHOOTING.md. If your issue is not present there, please feel free to open a new issue.

About

High quality, fast, modular reference implementation of SSD in PyTorch 1.0

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Languages

  • Python 92.5%
  • Cuda 4.2%
  • C++ 3.1%
  • C 0.2%