-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathVAE.py
223 lines (162 loc) · 5.04 KB
/
VAE.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
from keras.utils import to_categorical
import numpy as np
import math
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
from sklearn.cluster import DBSCAN
from scipy.spatial import distance
import tensorflow as tf
from tensorflow.keras.layers import Input, LSTM, RepeatVector, Dense, Dropout
from tensorflow.keras.models import Model
import pickle
class VAE:
def __init__(self, input_size, latent_dim, timesteps):
self.organized= False
self.latent_dim= latent_dim
self.input_size= input_size
self.timesteps = timesteps
self.counter = 0
self.x_train = []
self.y_train = []
self.x_test = []
self.y_test = []
self.map = np.zeros((self.input_size,latent_dim))
self.createModel()
self.createMap()
def createModel(self):
self.createConvModel()
def createConvModel(self):
input_shape= (self.input_size)
input_layer = Input(shape=input_shape)
layer = Dense(self.latent_dim)(input_layer)
#layer = Droupout(0.4)(layer)
#layer = Dense(latent_dim)(layer)
output = Dense(self.input_size,activation='sigmoid')(layer)
self.model = Model(input_layer, output)
self.encoder = Model(input_layer, layer)
def createLSTMModel(self):
inputs = Input(shape=(self.timesteps, self.input_size))
encoded = LSTM(self.latent_dim)(inputs)
decoded = RepeatVector(self.timesteps)(encoded)
decoded = LSTM(self.input_size, return_sequences=True)(decoded)
self.model = Model(inputs, decoded)
self.encoder = Model(inputs, encoded)
def input(self, x):
#convert to n-gram or skip-gram
for i,sample in enumerate(x):
if i - self.timesteps >= 0:
position = int(self.timesteps/2)
y = x[i-position]
a = i-self.timesteps
b = i-position
c = i-position+1
d = i+1
#rint(a,b,c,d)
#xit()
#sample = x[i-self.timesteps:(i-position)] + x[i-position+1:i+1]
sample = x[np.r_[a:b,c:d]]
#print(sample)
#sample= [a.argmax() for a in sample]
sample = np.sum(sample, axis=0)
#print(sample)
sample/= sample.sum()
#print(sample)
#exit()
#skip-gram
#self.dataset.append((y, sample))
self.x_train.append(y)
self.y_train.append(sample)
#print(sample)
#sample= np.argmax(sample)
#print(sample)
#exit()
#n-gram
#self.dataset.append((sample, y))
learning_rate= 1e-3
epochs=10
batch_size=64
loss= "mean_squared_error"
optimizer = tf.keras.optimizers.Adam(lr=learning_rate)
self.model.compile(optimizer=optimizer, loss=loss, metrics=['acc'])
np_x_train= np.array(self.x_train)
np_y_train= np.array(self.y_train)
#self.x_train = self.x_train[:,None]
#print(self.x_train.shape, self.y_train.shape)
self.model.fit(
np_x_train,
np_y_train,
epochs=epochs,
#validation_data=(x_val, val_labels),
verbose=2, # Logs once per epoch.
batch_size=batch_size)
#print(len(self.dataset))
#print(self.dataset[0])
#k= self.dataset[0]
#print(k[0].shape)
#exit()
def createMap(self):
all_possible_inputs = [to_categorical(i, self.input_size) for i in range(self.input_size)]
for i,a in enumerate(all_possible_inputs):
sample = a[None,:]
#print("a shape", a.shape)
predicted= self.encoder.predict(sample)
#print(predicted)
self.map[i] = predicted
def organize(self):
self.organized= True
#self.labels= DBSCAN(eps=3, min_samples=2).fit_predict(self.syncmap)
self.createMap()
self.labels= DBSCAN(eps=1, min_samples=2).fit_predict(self.map)
return self.labels
def activate(self, x):
'''
Return the label of the index with maximum input value
'''
if self.organized == False:
print("Activating a non-organized SyncMap")
return
#maximum output
max_index= np.argmax(x)
return self.labels[max_index]
def plotSequence(self, input_sequence, input_class,filename="plot.png"):
input_sequence= input_sequence[1:500]
input_class= input_class[1:500]
a= np.asarray(input_class)
t = [i for i,value in enumerate(a)]
c= [self.activate(x) for x in input_sequence]
plt.plot(t, a, '-g')
plt.plot(t, c, '-.k')
#plt.ylim([-0.01,1.2])
plt.savefig(filename,quality=1, dpi=300)
plt.show()
plt.close()
def plot(self, color=None, save = False, filename= "plot_map.png"):
if color is None:
color= self.labels
#print(self.syncmap)
#print(self.syncmap[:,0])
#print(self.syncmap[:,1])
if self.latent_dim == 2:
#print(type(color))
#print(color.shape)
ax= plt.scatter(self.map[:,0],self.map[:,1], c=color)
if self.latent_dim == 3:
fig = plt.figure()
ax = plt.axes(projection='3d')
ax.scatter3D(self.map[:,0],self.map[:,1], self.map[:,2], c=color);
#ax.plot3D(self.syncmap[:,0],self.syncmap[:,1], self.syncmap[:,2])
if save == True:
plt.savefig(filename)
plt.show()
plt.close()
def save(self, filename):
"""save class as self.name.txt"""
file = open(filename+'.txt','w')
file.write(pickle.dumps(self.__dict__))
file.close()
def load(self, filename):
"""try load self.name.txt"""
file = open(filename+'.txt','r')
dataPickle = file.read()
file.close()
self.__dict__ = pickle.loads(dataPickle)