forked from jte0419/Panel_Methods
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathCOMPUTE_CIRCULATION.m
37 lines (34 loc) · 1.69 KB
/
COMPUTE_CIRCULATION.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
% FUNCTION: COMPUTE CIRCULATION
% Written by: JoshTheEngineer
% YouTube : www.youtube.com/joshtheengineer
% Website : www.joshtheengineer.com
% Started: 02/11/19
% Updated: 02/11/19 - Started code
% - Works as expected
%
% PURPOSE
% - Compute the circulation around the defined ellipse
%
% INPUTS
% - a : Horizontal axis half-length
% - b : Vertical axis half-length
% - x0 : Ellipse center X coordinate
% - y0 : Ellipse center Y coordinate
% - numT : Number of points for integral
% - XX : Meshgrid X values
% - YY : Meshgrid Y values
%
% OUTPUTS
% - Lambda : Circulation [length^2/time]
% - xC : X-values of integral curve [numT x 1]
% - yC : Y-values of integral curve [numT x 1]
% - VxC : Velocity X-component on integral curve [numT x 1]
% - VyC : Velocity Y-component on integral curve [numT x 1]
function [Gamma,xC,yC,VxC,VyC] = COMPUTE_CIRCULATION(a,b,x0,y0,numT,Vx,Vy,XX,YY)
tEnd = (2*pi) - ((2*pi)/numT); % Ending angle [rad]
t = linspace(0,tEnd,numT)'; % Discretize ellipse into angles [rad]
xC = a*cos(t) + x0; % X coordinates of ellipse
yC = b*sin(t) + y0; % Y coordinates of ellipse
VxC = interp2(XX,YY,Vx,xC,yC); % X velocity component on ellipse
VyC = interp2(XX,YY,Vy,xC,yC); % Y velocity component on ellipse
Gamma = -(trapz(xC,VxC) + trapz(yC,VyC)); % Compute integral using trapezoid rule