forked from yingchen001/WaveFill
-
Notifications
You must be signed in to change notification settings - Fork 0
/
test_wavelet.py
51 lines (44 loc) · 1.85 KB
/
test_wavelet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
"""
Copyright (C) 2019 NVIDIA Corporation. All rights reserved.
Licensed under the CC BY-NC-SA 4.0 license (https://creativecommons.org/licenses/by-nc-sa/4.0/legalcode).
"""
import os
import data
import torch
import torch.nn.functional as F
from util import html
from collections import OrderedDict
from options.test_options import TestOptions
from models.wavelet_model import WaveletModel
from util.visualizer import Visualizer
from pytorch_wavelets import DWTForward, DWTInverse
opt = TestOptions().parse()
dataloader = data.create_dataloader(opt)
model = WaveletModel(opt)
model.eval()
xfm = DWTForward(J=opt.wavelet_decomp_level, mode='zero', wave='haar')
ifm = DWTInverse(mode='zero', wave='haar')
visualizer = Visualizer(opt)
# create a webpage that summarizes the all results
web_dir = os.path.join(opt.results_dir, opt.name,
'%s_%s' % (opt.phase, opt.which_epoch))
webpage = html.HTML(web_dir,
'Experiment = %s, Phase = %s, Epoch = %s' %
(opt.name, opt.phase, opt.which_epoch))
# test
for i, data_i in enumerate(dataloader):
if i * opt.batchSize >= opt.how_many:
break
generated = model(data_i, mode='inference')
Yl, Yh = xfm(data_i['image'][:,:3].cpu())
masks = data_i['mask'].cpu()
comp_images = data_i['masked_img'][:,:3].cpu() * (1-masks) + generated[-1].cpu() * masks
img_path = data_i['img_name']
for b in range(generated[-1].shape[0]):
print('process image... %s' % img_path[b])
visuals = OrderedDict([('masked_image', data_i['masked_img'][b,:3].cpu()),
('synthesized_image', generated[-1][b].cpu()),
('comp_image', comp_images[b].cpu()),
('ground_truth', data_i['image'][b].cpu())])
visualizer.save_images(webpage, visuals, img_path[b:b + 1])
webpage.save()