-
Notifications
You must be signed in to change notification settings - Fork 34
/
panostretch.py
182 lines (142 loc) · 5.9 KB
/
panostretch.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
import functools
import numpy as np
from scipy.ndimage import map_coordinates
def uv_meshgrid(w, h):
uv = np.stack(np.meshgrid(range(w), range(h)), axis=-1)
uv = uv.astype(np.float64)
uv[..., 0] = ((uv[..., 0] + 0.5) / w - 0.5) * 2 * np.pi
uv[..., 1] = ((uv[..., 1] + 0.5) / h - 0.5) * np.pi
return uv
@functools.lru_cache()
def _uv_tri(w, h):
uv = uv_meshgrid(w, h)
sin_u = np.sin(uv[..., 0])
cos_u = np.cos(uv[..., 0])
tan_v = np.tan(uv[..., 1])
return sin_u, cos_u, tan_v
def uv_tri(w, h):
sin_u, cos_u, tan_v = _uv_tri(w, h)
return sin_u.copy(), cos_u.copy(), tan_v.copy()
def coorx2u(x, w=1024):
return ((x + 0.5) / w - 0.5) * 2 * np.pi
def coory2v(y, h=512):
return ((y + 0.5) / h - 0.5) * np.pi
def u2coorx(u, w=1024):
return (u / (2 * np.pi) + 0.5) * w - 0.5
def v2coory(v, h=512):
return (v / np.pi + 0.5) * h - 0.5
def uv2xy(u, v, z=-50):
c = z / np.tan(v)
x = c * np.cos(u)
y = c * np.sin(u)
return x, y
def pano_connect_points(p1, p2, z=-50, w=1024, h=512):
if p1[0] == p2[0]:
return np.array([p1, p2], np.float32)
u1 = coorx2u(p1[0], w)
v1 = coory2v(p1[1], h)
u2 = coorx2u(p2[0], w)
v2 = coory2v(p2[1], h)
x1, y1 = uv2xy(u1, v1, z)
x2, y2 = uv2xy(u2, v2, z)
if abs(p1[0] - p2[0]) < w / 2:
pstart = np.ceil(min(p1[0], p2[0]))
pend = np.floor(max(p1[0], p2[0]))
else:
pstart = np.ceil(max(p1[0], p2[0]))
pend = np.floor(min(p1[0], p2[0]) + w)
coorxs = (np.arange(pstart, pend + 1) % w).astype(np.float64)
vx = x2 - x1
vy = y2 - y1
us = coorx2u(coorxs, w)
ps = (np.tan(us) * x1 - y1) / (vy - np.tan(us) * vx)
cs = np.sqrt((x1 + ps * vx) ** 2 + (y1 + ps * vy) ** 2)
vs = np.arctan2(z, cs)
coorys = v2coory(vs)
return np.stack([coorxs, coorys], axis=-1)
def pano_stretch(img, mask, corners, kx, ky, order=1):
'''
img: [H, W, C]
corners: [N, 2] in image coordinate (x, y) format
kx: Stretching along front-back direction
ky: Stretching along left-right direction
order: Interpolation order. 0 for nearest-neighbor. 1 for bilinear.
'''
# Process image
sin_u, cos_u, tan_v = uv_tri(img.shape[1], img.shape[0])
u0 = np.arctan2(sin_u * kx / ky, cos_u)
v0 = np.arctan(tan_v * np.sin(u0) / sin_u * ky)
refx = (u0 / (2 * np.pi) + 0.5) * img.shape[1] - 0.5
refy = (v0 / np.pi + 0.5) * img.shape[0] - 0.5
# [TODO]: using opencv remap could probably speedup the process a little
stretched_img = np.stack([
map_coordinates(img[..., i], [refy, refx], order=order, mode='wrap')
for i in range(img.shape[-1])
], axis=-1)
stretched_mask = np.stack([
map_coordinates(mask[..., i], [refy, refx], order=order, mode='wrap')
for i in range(mask.shape[-1])
], axis=-1)
#stretched_label = np.stack([
# map_coordinates(label[..., i], [refy, refx], order=order, mode='wrap')
# for i in range(label.shape[-1])
#], axis=-1)
# Process corners
corners_u0 = coorx2u(corners[:, 0], img.shape[1])
corners_v0 = coory2v(corners[:, 1], img.shape[0])
corners_u = np.arctan2(np.sin(corners_u0) * ky / kx, np.cos(corners_u0))
corners_v = np.arctan(np.tan(corners_v0) * np.sin(corners_u) / np.sin(corners_u0) / ky)
cornersX = u2coorx(corners_u, img.shape[1])
cornersY = v2coory(corners_v, img.shape[0])
stretched_corners = np.stack([cornersX, cornersY], axis=-1)
return stretched_img, stretched_mask, stretched_corners
def visualize_pano_stretch(stretched_img, stretched_cor, title):
'''
Helper function for visualizing the effect of pano_stretch
'''
thikness = 2
color = (0, 255, 0)
for i in range(4):
xys = pano_connect_points(stretched_cor[i*2], stretched_cor[(i*2+2) % 8], z=-50)
xys = xys.astype(int)
blue_split = np.where((xys[1:, 0] - xys[:-1, 0]) < 0)[0]
if len(blue_split) == 0:
cv2.polylines(stretched_img, [xys], False, color, 2)
else:
t = blue_split[0] + 1
cv2.polylines(stretched_img, [xys[:t]], False, color, thikness)
cv2.polylines(stretched_img, [xys[t:]], False, color, thikness)
for i in range(4):
xys = pano_connect_points(stretched_cor[i*2+1], stretched_cor[(i*2+3) % 8], z=50)
xys = xys.astype(int)
blue_split = np.where((xys[1:, 0] - xys[:-1, 0]) < 0)[0]
if len(blue_split) == 0:
cv2.polylines(stretched_img, [xys], False, color, 2)
else:
t = blue_split[0] + 1
cv2.polylines(stretched_img, [xys[:t]], False, color, thikness)
cv2.polylines(stretched_img, [xys[t:]], False, color, thikness)
cv2.putText(stretched_img, title, (25, 50), cv2.FONT_HERSHEY_SIMPLEX, 1,
(0, 0, 0), 2, cv2.LINE_AA)
return stretched_img.astype(np.uint8)
if __name__ == '__main__':
import argparse
import time
from PIL import Image
import cv2
parser = argparse.ArgumentParser()
parser.add_argument('--i', default='data/valid/img/pano_abpohapclcyuuz.png')
parser.add_argument('--i_gt', default='data/valid/label_cor/pano_abpohapclcyuuz.txt')
parser.add_argument('--o', default='sample_stretched_pano.png')
parser.add_argument('--kx', default=2, type=float,
help='Stretching along front-back direction')
parser.add_argument('--ky', default=1, type=float,
help='Stretching along left-right direction')
args = parser.parse_args()
img = np.array(Image.open(args.i), np.float64)
with open(args.i_gt) as f:
cor = np.array([line.strip().split() for line in f], np.int32)
stretched_img, stretched_cor = pano_stretch(img, cor, args.kx, args.ky)
title = 'kx=%3.2f, ky=%3.2f' % (args.kx, args.ky)
visual_stretched_img = visualize_pano_stretch(stretched_img, stretched_cor, title)
Image.fromarray(visual_stretched_img).save(args.o)