-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathestimateMicrobialBiomass.r
90 lines (69 loc) · 4.49 KB
/
estimateMicrobialBiomass.r
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
library(tidyverse)
# Read in the PLFA data and keys from Github repository
plfaData <- readRDS(url("https://github.com/zoey-rw/SoilBiomassNEON/raw/refs/heads/main/raw_data/NEON_plfa.rds"))
plfa_var_key = read_csv(url("https://raw.githubusercontent.com/zoey-rw/SoilBiomassNEON/refs/heads/main/reference_data/PLFA_to_biomass_key.csv")) %>% filter(!is.na(neonVariable))
# Or local files
#plfaData <- readRDS("./raw_data/NEON_plfa.rds")
#plfa_var_key = read_csv("./reference_data/NEON_PLFA_variable_key.csv")
# Select variables for important PLFA markers, as well as sample identifiers and quality flags
variables_to_keep = plfa_var_key$neonVariable %>% unique() %>% na.omit %>%
c("biomassID", "siteID","dataQF","analysisResultsQF","domainID","decimalLatitude","decimalLongitude",
"cis18To1n9ScaledConcentration","c20To5n3ScaledConcentration","c16To1n7ScaledConcentration")
# Subset the dataframe to columns of interest
# Using data that has been "scaled" to an internal standard
plfa_scaled = plfaData$sme_scaledMicrobialBiomass %>%
filter(analysisResultsQF == "OK") %>%
select(all_of(variables_to_keep))
gram_positive_bac = plfa_var_key %>%
filter(grepl("Gram-positive", paste(targetSubGroup, targetGroup, targetGroupBroad))) %>%
select(neonVariable) %>% unlist
gram_negative_bac = plfa_var_key %>%
filter(grepl("Gram-negative", paste(targetSubGroup, targetGroup, targetGroupBroad))) %>%
select(neonVariable) %>% unlist
arbuscular_fungi = plfa_var_key %>%
filter(grepl("arbuscular", paste(targetSubGroup, targetGroup, targetGroupBroad))) %>%
select(neonVariable) %>% unlist
sap_ecto_fungi = plfa_var_key %>%
filter(grepl("saprotrophic", paste(targetSubGroup, targetGroup, targetGroupBroad))) %>%
select(neonVariable) %>% unlist
fungi_minus_amf = plfa_var_key %>%
filter(grepl("fungi|Fungi", paste(targetSubGroup, targetGroup, targetGroupBroad))) %>%
select(neonVariable) %>% unlist
# Includes many organisms, not just microbes
total_biomass = "totalLipidScaledConcentration"
arbuscular_fungi = c(arbuscular_fungi, "c20To5n3ScaledConcentration")
bacteria = c(gram_positive_bac, gram_negative_bac)
fungi = c(fungi_minus_amf, sap_ecto_fungi, arbuscular_fungi)
bacteria_fungi_total = c(bacteria, fungi)
plfa_grouped = plfa_scaled %>% #group_by(sampleID, biomassID, siteID) %>%
mutate(gram_positive = rowSums(across(!!gram_positive_bac),na.rm=T),
gram_negative = rowSums(across(!!gram_negative_bac),na.rm=T),
sap_ecto_fungi = rowSums(across(!!sap_ecto_fungi), na.rm=T),
fungi_minus_amf = rowSums(across(!!fungi_minus_amf),na.rm=T),
arbuscular_fungi = rowSums(across(!!arbuscular_fungi),na.rm=T),
total_biomass = rowSums(across(!!total_biomass),na.rm=T),
bacteria_fungi_total = rowSums(across(!!bacteria_fungi_total),na.rm=T),
total_fungi = fungi_minus_amf + arbuscular_fungi + sap_ecto_fungi,
total_bacteria = gram_positive + gram_negative,
proportion_fungi = total_fungi/bacteria_fungi_total,
proportion_bacteria = total_bacteria/bacteria_fungi_total,
proportion_sap_ecto_fungi = sap_ecto_fungi/bacteria_fungi_total,
proportion_arbuscular_fungi = arbuscular_fungi/bacteria_fungi_total)
biomass_to_save = plfa_grouped %>% select(siteID, biomassID, domainID,
decimalLatitude, decimalLongitude,
proportion_fungi,
proportion_bacteria,
gram_positive,
gram_negative,
total_fungi, total_bacteria,
proportion_sap_ecto_fungi,
proportion_arbuscular_fungi,
bacteria_fungi_total,
total_biomass)
saveRDS(biomass_to_save, "./NEON_microbial_biomass_PLFA.rds")
# Quick look at how observations vary across sites!
biomass_to_save %>% ggplot() +
geom_jitter(aes(x = reorder(siteID, decimalLatitude), y = proportion_fungi, color=decimalLatitude), width = .1) +
theme_bw(base_size = 14) + xlab("NEON Site ID") + ylab("Proportion of fungi in soil biomass") + theme(axis.text.x = element_text(angle = 45, vjust = 1, hjust=1))
#+ theme(axis.text.x = element_text(size = 12, angle = 45))
ggsave("fungi_plot.png", width = 14, height=5, units = "in")