Skip to content

Latest commit

 

History

History
89 lines (64 loc) · 1.85 KB

README.md

File metadata and controls

89 lines (64 loc) · 1.85 KB

RecomText - Multimodal Recommendation System

A recommendation system that combines textual descriptions and demographic data to create personalized recommendations.

Installation

  1. Clone the repository:

    git clone https://github.com/your-username/RecomText.git
    cd RecomText
  2. Create and activate virtual environment:

    python -m venv venv
    source venv/bin/activate  # for Linux/Mac
    venv\Scripts\activate  # for Windows
  3. Install dependencies:

    pip install -r requirements.txt

Data Preparation

  1. Place your source data in the data/ directory:

    • train_events.csv
    • video_info_v2.csv
    • train_targets.csv
    • all_events.csv
  2. Run the data preparation script:

    python -m data.baseline_socdem

Training

  1. Configure parameters in configs/config.yaml

  2. Start training via Jupyter notebook:

    jupyter notebook notebooks/train.ipynb

    Alternatively, use the training script:

    python train.py

Inference

Use the following code for getting recommendations:

допишу позже

Project Structure

  • data/ - data processing modules
  • models/ - model architectures
  • utils/ - utility functions
  • notebooks/ - jupyter notebooks
  • configs/ - configuration files

System Requirements

  • Python 3.8+
  • CUDA-compatible GPU (optional)

Features

  • Multimodal embeddings combining text and IDs
  • Contrastive learning approach
  • Efficient batch processing
  • Support for both CPU and GPU inference
  • Configurable model architecture

License

MIT License

Contributing

  1. Fork the repository
  2. Create your feature branch (git checkout -b feature/amazing-feature)
  3. Commit your changes (git commit -m 'Add amazing feature')
  4. Push to the branch (git push origin feature/amazing-feature)
  5. Open a Pull Request