diff --git a/quantile_forest/_quantile_forest.py b/quantile_forest/_quantile_forest.py index 1c49eed..4aa70ef 100755 --- a/quantile_forest/_quantile_forest.py +++ b/quantile_forest/_quantile_forest.py @@ -491,6 +491,11 @@ def predict( - If "nearest", then ``i`` or ``j``, whichever is nearest. - If "midpoint", then ``(i + j) / 2``. + .. note:: + When `max_samples_leaf=1`, the specific interpolation + options will depend on those available in the NumPy + `percentile` and `nanpercentile` methods. + weighted_quantile : bool, default=True Calculate a weighted quantile. Weighted quantiles are computed by assigning weights to each training sample, while unweighted