diff --git a/quantile_forest/tests/examples/plot_quantile_conformalized.py b/quantile_forest/tests/examples/plot_quantile_conformalized.py index 6e0caf4..8b0418d 100755 --- a/quantile_forest/tests/examples/plot_quantile_conformalized.py +++ b/quantile_forest/tests/examples/plot_quantile_conformalized.py @@ -6,8 +6,10 @@ construct reliable prediction intervals using conformalized quantile regression (CQR). CQR offers prediction intervals that attain valid coverage, while QRF may require additional calibration for reliable interval estimates. -Adapted from "Prediction intervals: Quantile Regression Forests" by Carl McBride -Ellis: +Notice that in this example, by using CQR we obtain a level of coverage (i.e., +percentage of samples that actaully fall within their prediction interval) +that is closer to the target level. Adapted from "Prediction intervals: +Quantile Regression Forests" by Carl McBride Ellis: https://www.kaggle.com/code/carlmcbrideellis/prediction-intervals-quantile-regression-forests. """ @@ -225,7 +227,7 @@ def plot_prediction_intervals(df, domain): ) .transform_calculate( coverage_text=( - "'Coverage: ' + format(datum.coverage * 100, '.1f') + '%'" + f"'Coverage: ' + format({alt.datum['coverage'] * 100}, '.1f') + '%'" f" + ' (target = {cov_pct}%)'" ) ) @@ -240,7 +242,9 @@ def plot_prediction_intervals(df, domain): base.transform_aggregate( coverage="mean(coverage)", width="mean(width)", groupby=["strategy"] ) - .transform_calculate(width_text="'Interval Width: ' + format(datum.width, '$,d')") + .transform_calculate( + width_text=f"'Interval Width: ' + format({alt.datum['width']}, '$,d')" + ) .mark_text(align="left", baseline="top") .encode( x=alt.value(5), diff --git a/quantile_forest/tests/examples/plot_quantile_multioutput.py b/quantile_forest/tests/examples/plot_quantile_multioutput.py index 4f2a76c..a8cd225 100755 --- a/quantile_forest/tests/examples/plot_quantile_multioutput.py +++ b/quantile_forest/tests/examples/plot_quantile_multioutput.py @@ -6,7 +6,7 @@ regressor for multiple target variables. For each target, multiple quantiles can be estimated simultaneously. In this example, the target variable has two output values for each sample, with a single regressor used to estimate -three quantiles (the median and interval) for each target output. +three quantiles (the median and 95% interval) for each target output. """ import altair as alt diff --git a/quantile_forest/tests/examples/plot_quantile_vs_standard.py b/quantile_forest/tests/examples/plot_quantile_vs_standard.py index 4cb45bd..64dc023 100755 --- a/quantile_forest/tests/examples/plot_quantile_vs_standard.py +++ b/quantile_forest/tests/examples/plot_quantile_vs_standard.py @@ -46,49 +46,49 @@ "QRF (Median)": "#006aff", } -df = pd.DataFrame({"Actual": y_test, "RF (Mean)": y_pred_rf, "QRF (Median)": y_pred_qrf}) +df = pd.DataFrame({"actual": y_test, "rf": y_pred_rf, "qrf": y_pred_qrf}) def plot_prediction_histograms(df, legend): - click = alt.selection_point(fields=["estimator"], bind="legend") + click = alt.selection_point(fields=["label"], bind="legend") color = alt.condition( click, - alt.Color("estimator:N", sort=list(legend.keys()), title=None), + alt.Color("label:N", sort=list(legend.keys()), title=None), alt.value("lightgray"), ) chart = ( - alt.Chart(df, width=alt.Step(6)) - .transform_fold(list(legend.keys()), as_=["estimator", "y_pred"]) - .transform_joinaggregate(total="count(*)", groupby=["estimator"]) + alt.Chart(df) + .transform_calculate(calculate=f"round({alt.datum['actual']} * 10) / 10", as_="Actual") + .transform_calculate(calculate=f"round({alt.datum['rf']} * 10) / 10", as_="RF (Mean)") + .transform_calculate(calculate=f"round({alt.datum['qrf']} * 10) / 10", as_="QRF (Median)") + .transform_fold(["Actual", "RF (Mean)", "QRF (Median)"], as_=["label", "value"]) + .transform_joinaggregate(total="count(*)", groupby=["label"]) .transform_calculate(pct="1 / datum.total") .mark_bar() .encode( - x=alt.X("estimator:N", axis=alt.Axis(labels=False, title=None)), - y=alt.Y("sum(pct):Q", axis=alt.Axis(title="Frequency")), - color=color, - column=alt.Column( - "y_pred:Q", - bin=alt.Bin(maxbins=80), - header=alt.Header( - labelExpr="datum.value % 1 == 0 ? floor(datum.value) : null", - labelOrient="bottom", - titleOrient="bottom", + x=alt.X( + "value:O", + axis=alt.Axis( + labelAngle=0, + labelExpr="datum.value % 0.5 == 0 ? datum.value : null", ), - title="Actual and Predicted Target Values", + title="Value", ), + y=alt.Y("sum(pct):Q", axis=alt.Axis(format=".0%", title="Percentage")), + color=color, + xOffset=alt.XOffset("label:N"), tooltip=[ - alt.Tooltip("estimator:N", title=" "), + alt.Tooltip("label:N", title="Label"), + alt.Tooltip("value:O", title="Value (binned)"), + alt.Tooltip("sum(pct):Q", format=".0%", title="Percentage"), ], ) .add_params(click) - .configure_facet(spacing=0) .configure_range(category=alt.RangeScheme(list(legend.values()))) - .configure_scale(bandPaddingInner=0.2) - .configure_view(stroke=None) + .properties(height=400, width=650) ) - return chart diff --git a/quantile_forest/tests/examples/plot_quantile_weighting.py b/quantile_forest/tests/examples/plot_quantile_weighting.py index 00c6c58..39e9c91 100755 --- a/quantile_forest/tests/examples/plot_quantile_weighting.py +++ b/quantile_forest/tests/examples/plot_quantile_weighting.py @@ -30,7 +30,7 @@ def timing(): t1 = time.time() -X, y = datasets.make_regression(n_samples=250, n_features=4, n_targets=5, random_state=0) +X, y = datasets.make_regression(n_samples=500, n_features=4, n_targets=5, random_state=0) X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.5, random_state=0) @@ -40,8 +40,8 @@ def timing(): "QRF Unweighted Quantile": "#001751", } -est_sizes = [1, 5, 10, 25, 50, 100] -n_repeats = 10 +est_sizes = [1, 5, 10, 25, 50, 75, 100] +n_repeats = 5 timings = np.empty((len(est_sizes), n_repeats, 3)) for i, n_estimators in enumerate(est_sizes):