-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathtrain_resnet.py
251 lines (212 loc) · 9.08 KB
/
train_resnet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
'''
code by zzg@2021/05/23
'''
# import data.coco.COCO_ROOT as COCO_ROOT
# import data.coco.COCODetection as COCODetection
from data import *
from utils.augmentations import SSDAugmentation, SSDAugmentation_mosaic
from layers.modules import MultiBoxLoss
import os
import time
import torch
from torch.autograd import Variable
import torch.nn as nn
import torch.optim as optim
import torch.backends.cudnn as cudnn
import torch.nn.init as init
import torch.utils.data as data
import argparse
import random
import warnings
warnings.filterwarnings('ignore')
from attention.attention import WarmUpLR
import math
from ssd_resnet50 import build_ssd
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
os.environ["CUDA_VISIBLE_DEVICES"] = "0"
MEANS = (104, 117, 123)
def str2bool(v):
return v.lower() in ("yes", "true", "t", "1")
model_save_dir = "weights/resnet"
if not os.path.exists(model_save_dir):
os.makedirs(model_save_dir)
parser = argparse.ArgumentParser(
description='Single Shot MultiBox Detector Training With Pytorch')
train_set = parser.add_mutually_exclusive_group()
parser.add_argument('--dataset', default='VOC', choices=['VOC', 'COCO'],
type=str, help='VOC or COCO')
parser.add_argument('--dataset_root', default=VOC_ROOT,
help='Dataset root directory path')
parser.add_argument('--resnet_pre_model', default="weights/resnet50.pth", #"mb2-imagenet-71_8.pth",
help='Pretrained base model')
parser.add_argument('--batch_size', default=16, type=int,
help='Batch size for training')
parser.add_argument('--resume', default=None, type=str,
help='Checkpoint state_dict file to resume training from')
parser.add_argument('--start_iter', default=0, type=int,
help='Resume training at this iter')
parser.add_argument('--num_workers', default=8, type=int,
help='Number of workers used in dataloading')
parser.add_argument('--cuda', default=True, type=str2bool,
help='Use CUDA to train model')
parser.add_argument('--lr', '--learning-rate', default=1e-3, type=float,
help='initial learning rate')
parser.add_argument('--momentum', default=0.9, type=float,
help='Momentum value for optim')
parser.add_argument('--weight_decay', default=5e-4, type=float,
help='Weight decay for SGD')
parser.add_argument('--gamma', default=0.1, type=float,
help='Gamma update for SGD')
parser.add_argument('--save_folder', default='weights/',
help='Directory for saving checkpoint models')
args = parser.parse_args()
if torch.cuda.is_available():
if args.cuda:
torch.set_default_tensor_type('torch.cuda.FloatTensor')
if not args.cuda:
print("WARNING: It looks like you have a CUDA device, but aren't " +
"using CUDA.\nRun with --cuda for optimal training speed.")
torch.set_default_tensor_type('torch.FloatTensor')
else:
torch.set_default_tensor_type('torch.FloatTensor')
if not os.path.exists(args.save_folder):
os.mkdir(args.save_folder)
def train():
if args.dataset == 'COCO':
if args.dataset_root == VOC_ROOT:
if not os.path.exists(COCO_ROOT):
parser.error('Must specify dataset_root if specifying dataset')
print("WARNING: Using default COCO dataset_root because " +
"--dataset_root was not specified.")
args.dataset_root = COCO_ROOT
cfg = coco
dataset = COCODetection(root=args.dataset_root,
transform=SSDAugmentation(cfg['min_dim'],
MEANS))
elif args.dataset == 'VOC':
if args.dataset_root == COCO_ROOT:
parser.error('Must specify dataset if specifying dataset_root')
cfg = voc
dataset = VOCDetection(root=args.dataset_root,
transform=SSDAugmentation(cfg['min_dim'],MEANS))
ssd_net = build_ssd('train', cfg['min_dim'], cfg['num_classes'])
net = ssd_net
if args.cuda:
net = torch.nn.DataParallel(ssd_net)
cudnn.benchmark = True
if args.resume:
print('Resuming training, loading {}...'.format(args.resume))
ssd_net.load_weights(args.resume)
else:
ssd_net.resnet.load_state_dict(torch.load(args.resnet_pre_model), strict=False)
if isinstance(ssd_net.resnet, torch.nn.DataParallel):
ssd_net.mobilenet = ssd_net.resnet.module
if args.cuda:
net = net.cuda()
if not args.resume:
print('Initializing weights...')
# initialize newly added layers' weights with xavier method
ssd_net.extras.apply(weights_init)
ssd_net.loc.apply(weights_init)
ssd_net.conf.apply(weights_init)
optimizer = optim.SGD(net.parameters(), lr=args.lr, momentum=args.momentum,
weight_decay=args.weight_decay)
warmup_scheduler = WarmUpLR(optimizer, 40 * 5)
criterion = MultiBoxLoss(cfg['num_classes'], 0.5, True, 0, True, 3, 0.5,
False, args.cuda)
net.train()
# loss counters
loc_loss = 0
conf_loss = 0
epoch = 0
print('Loading the dataset...')
epoch_size = len(dataset) // args.batch_size
print('Training SSD on:', dataset.name)
print('Using the specified args:')
print(args)
step_index = 0
data_loader = data.DataLoader(dataset, args.batch_size,
num_workers=args.num_workers,
shuffle=True, collate_fn=detection_collate,
pin_memory=True, worker_init_fn=worker_init_fn)
# create batch iterator
batch_iterator = iter(data_loader)
t0 = time.time()
for iteration in range(args.start_iter, cfg['max_iter']):
if iteration in cfg['lr_steps']:
step_index += 1
adjust_learning_rate(optimizer, args.gamma, step_index)
if iteration != 0 and (iteration % epoch_size == 0):
epoch += 1
# load train data
try:
images, targets = next(batch_iterator)
except StopIteration:
batch_iterator = iter(data_loader)
images, targets = next(batch_iterator)
with torch.no_grad():
if args.cuda:
images = Variable(images.cuda())
targets = [Variable(ann.cuda()) for ann in targets]
else:
images = Variable(images)
targets = [Variable(ann) for ann in targets]
# backprop
optimizer.zero_grad()
# forward
out = net(images)
loss_l, loss_c = criterion(out, targets)
loss = loss_l + loss_c
loss.backward()
if iteration <= 200:
warmup_scheduler.step()
else:
optimizer.step()
loc_loss += loss_l.item()
conf_loss += loss_c.item()
if iteration % 2 == 0:
#print('iter ' + repr(iteration) + ' || Loss: %.4f ||' % (loss.data[0]), end=' ')
print('[%3d/%d] iter '%(epoch+args.start_iter/epoch_size,int(cfg['max_iter']) / epoch_size) + repr(iteration) + ' || Loss: %.4f ||' % (loss.item()), end=' ')
print('timer: %.4f sec.' % (time.time() - t0))
t0 = time.time()
#if iteration != 0 and iteration % 5000 == 0:
if iteration >= 5000 and iteration % 500 == 0:
print('Saving state, iter:', iteration)
torch.save(ssd_net.state_dict(), model_save_dir + '/'+ 'resent50_' +
repr(iteration) + '.pth')
torch.save(ssd_net.state_dict(), model_save_dir + '/' + 'resent50_final' + '.pth')
def adjust_learning_rate(optimizer, gamma, step):
"""Sets the learning rate to the initial LR decayed by 10 at every
specified step
# Adapted from PyTorch Imagenet example:
# https://github.com/pytorch/examples/blob/master/imagenet/main.py
"""
lr = args.lr * (gamma ** (step))
for param_group in optimizer.param_groups:
param_group['lr'] = lr
def xavier(param):
init.xavier_uniform_(param)
def weights_init(m):
if isinstance(m, nn.Conv2d):
xavier(m.weight.data)
# m.bias.data.zero_()
# torch.nn.init.constant_(m.bias.data, 0.0)
def weights_init_normal(m):
classname = m.__class__.__name__
if classname.find("Conv") != -1:
torch.nn.init.normal_(m.weight.data, 0.0, 0.02)
elif classname.find("BatchNorm2d") != -1:
torch.nn.init.normal_(m.weight.data, 1.0, 0.02)
torch.nn.init.constant_(m.bias.data, 0.0)
def setup_seed(seed=2019):
torch.manual_seed(seed) # cpu
torch.cuda.manual_seed(seed) #gpu
np.random.seed(seed) #numpy
random.seed(seed)
torch.backends.cudnn.deterministic=True # cudnn
def worker_init_fn(worker_id): # After creating the workers, each worker has an independent seed that is initialized to the curent random seed + the id of the worker
np.random.seed(np.random.get_state()[1][0] + worker_id)
if __name__ == '__main__':
# torch.backends.cudnn.enabled = True
setup_seed() # set ramdom seed
train()