-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathssd_cbam_fpn.py
368 lines (315 loc) · 15.2 KB
/
ssd_cbam_fpn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.autograd import Variable
from layers import *
from data import voc, coco
import os
######################################################
# 【通道显著性模块】 CBAM模块
class ChannelAttention(nn.Module):
def __init__(self, inplanes, ratio=16):
super(ChannelAttention, self).__init__()
# 特征图先经过最大池化和平均池化 结果是1*1*通道数的tensor【最大池化,平均池化】
self.avg_pool = nn.AdaptiveAvgPool2d(1)
self.max_pool = nn.AdaptiveMaxPool2d(1)
# 在经过全连接层先降低维度再升高维度,进行特征融合【MLP】
self.fc1 = nn.Conv2d(inplanes, inplanes // 16, 1, bias=False)
self.relu1 = nn.ReLU()
self.fc2 = nn.Conv2d(inplanes // 16, inplanes, 1, bias=False)
# 【激活层】
self.sigmoid = nn.Sigmoid()
def forward(self, x):
avg_out = self.fc2(self.relu1(self.fc1(self.avg_pool(x))))
max_out = self.fc2(self.relu1(self.fc1(self.max_pool(x))))
out = avg_out + max_out # 相加之后每个像素点的位置元素相加
return self.sigmoid(out)
# 【空间显著性模块】
class SpatialAttention(nn.Module):
def __init__(self, kernel_size=7):
super(SpatialAttention, self).__init__()
assert kernel_size in (3, 7), 'kernel size must be 3 or 7' # 这里设定kernal_size必须是3,7
padding = 3 if kernel_size == 7 else 1
self.conv1 = nn.Conv2d(2, 1, kernel_size, padding=padding, bias=False)
self.sigmoid = nn.Sigmoid()
def forward(self, x):
avg_out = torch.mean(x, dim=1, keepdim=True)
max_out, _ = torch.max(x, dim=1, keepdim=True) # 会返回结果元素的值 和 对应的位置index
x = torch.cat([avg_out, max_out], dim=1)
x = self.conv1(x)
return self.sigmoid(x)
#【Bottleneck将特征图先经过 通道显著性模块,再经过 空间显著性模块】
class Bottleneck(nn.Module): # 将通道显著性和空间显著性模块相连接
def __init__(self, inplanes, stride=1, downsample=None):
super(Bottleneck, self).__init__()
self.ca = ChannelAttention(inplanes)
self.sa = SpatialAttention()
self.stride = stride
self.relu = nn.ReLU(inplace=True)
def forward(self, x):
save = x # 先将原本的特征图保存下来
out = self.ca(x) * x # 先经过通道显著性模块
out = self.sa(out) * out # 再经过空间显著性模块
out += save ###相加
out = self.relu(out) # 最后再经过relu激活函数
return out # 输出结果尺寸不变,但是通道数变成了【planes * 4】这就是残差模块
#############################【SSD中融合特征显著性模块CBAM】######################
class SSD(nn.Module):
"""Single Shot Multibox Architecture
The network is composed of a base VGG network followed by the
added multibox conv layers. Each multibox layer branches into
1) conv2d for class conf scores
2) conv2d for localization predictions
3) associated priorbox layer to produce default bounding
boxes specific to the layer's feature map size.
See: https://arxiv.org/pdf/1512.02325.pdf for more details.
Args:
phase: (string) Can be "test" or "train"
size: input image size
base: VGG16 layers for input, size of either 300 or 500
extras: extra layers that feed to multibox loc and conf layers
head: "multibox head" consists of loc and conf conv layers
"""
def __init__(self, phase, size, base, extras, head, num_classes):
super(SSD, self).__init__()
self.phase = phase
self.num_classes = num_classes
self.cfg = voc
self.priorbox = PriorBox(self.cfg)
self.priors = Variable(self.priorbox.forward(), volatile=True)
self.size = size
# SSD network
# 经过修改的vgg网络
self.vgg = nn.ModuleList(base)
# Layer learns to scale the l2 normalized features from conv4_3
self.L2Norm = L2Norm(512, 20)
self.extras = nn.ModuleList(extras)
self.loc = nn.ModuleList(head[0])
self.conf = nn.ModuleList(head[1])
if phase == 'test':
self.softmax = nn.Softmax(dim=-1)
self.detect = Detect(num_classes, 0, 200, 0.01, 0.45)
# =====bobo新增==================
# pool2到conv4_3 扩张卷积,尺度少一半
self.DilationConv_128_128 = nn.Conv2d(in_channels=128, out_channels=128, kernel_size=3, padding=2, dilation=2,
stride=2)
# conv4_3到conv4_3 尺度不变
self.conv_512_256 = nn.Conv2d(in_channels=512, out_channels=256, kernel_size=3, padding=1, stride=1)
# fc7 到 conv4_3 反卷积上采样,尺度大一倍
self.DeConv_1024_128 = nn.ConvTranspose2d(in_channels=1024, out_channels=128, kernel_size=2, stride=2)
# conv4_3 到FC7 扩张卷积,尺度少一半
self.DilationConv_512_128 = nn.Conv2d(in_channels=512, out_channels=128, kernel_size=3, padding=2, dilation=2,
stride=2)
# FC7到FC7 尺度不变
self.conv_1024_256 = nn.Conv2d(in_channels=1024, out_channels=256, kernel_size=3, padding=1, stride=1)
# conv8_2 到 FC7 反卷积上采样,尺度大一倍 10->19
self.DeConv_512_128 = nn.ConvTranspose2d(in_channels=512, out_channels=128, kernel_size=3, stride=2, padding=1)
# conv5_3到conv8_2
self.DilationConv_512_128_2 = nn.Conv2d(in_channels=512, out_channels=128, kernel_size=3, padding=2, dilation=2,
stride=2)
# conv8_2到conv8_2 尺度不变
self.conv_512_256_2 = nn.Conv2d(in_channels=512, out_channels=256, kernel_size=3, padding=1, stride=1)
# conv9_2到conv8_2
self.DeConv_256_128_2 = nn.ConvTranspose2d(in_channels=256, out_channels=128, kernel_size=2, stride=2)
# 平滑层
self.smooth = nn.Conv2d(512, 512, kernel_size=3, padding=1, stride=1)
# 通道数BN层的参数是输出通道数out_channels
self.bn = nn.BatchNorm2d(128)
# CBAM模块【6个特征层:512 512 512 256 256 256 】
self.CBAM1 = Bottleneck(512)
self.CBAM2 = Bottleneck(512)
self.CBAM3 = Bottleneck(512)
self.CBAM4 = Bottleneck(256)
self.CBAM5 = Bottleneck(256)
self.CBAM6 = Bottleneck(256)
def forward(self, x):
"""Applies network layers and ops on input image(s) x.
Args:
x: input image or batch of images. Shape: [batch,3,300,300].
Return:
Depending on phase:
test:
Variable(tensor) of output class label predictions,
confidence score, and corresponding location predictions for
each object detected. Shape: [batch,topk,7]
train:
list of concat outputs from:
1: confidence layers, Shape: [batch*num_priors,num_classes]
2: localization layers, Shape: [batch,num_priors*4]
3: priorbox layers, Shape: [2,num_priors*4]
"""
sources = list()
loc = list()
conf = list()
# 原论文中vgg的conv4_3,relu之后加入L2 Normalization正则化,然后保存feature map
# apply vgg up to conv4_3 relu
# 将vgg层的feature map保存
# k的范围为0-22
# =========开始保存 所需的所有中间信息
# 保存pool2(pool下标从1开始)的结果
# 经过maxpool,所以不需要L2Norm正则化
for k in range(10):
x = self.vgg[k](x)
sources.append(x)
# apply vgg up to conv4_3 relu
for k in range(10,23):
x = self.vgg[k](x)
s = self.L2Norm(x)
sources.append(s)
# apply vgg up to conv5_3 relu
for k in range(23,30):
x = self.vgg[k](x)
s = self.L2Norm(x)
sources.append(s)
# apply vgg up to fc7
for k in range(30, len(self.vgg)):
x = self.vgg[k](x)
sources.append(x)
#apply extra layers and cache source layer outputs
for k, v in enumerate(self.extras):
x = F.relu(v(x), inplace=True)
if k % 2 == 1:
sources.append(x)
# 此时sources保存了所有中间结果,论文中的pool2、conv4_3、conv5_3、fc7、conv8_2、conv9_2、conv10_2、conv11_2
# sources_final保存各层融合之后的最终结果
sources_final = list()
# con4_3层融合结果 self.bn1(self.conv1(x)) 在通道维度上融合
conv4_fp = torch.cat((F.relu(self.bn(self.DilationConv_128_128(sources[0])), inplace=True),
F.relu(self.conv_512_256(sources[1]), inplace=True),
F.relu(self.DeConv_1024_128(sources[3]), inplace=True)), 1)
conv4_fp = F.relu(self.smooth(conv4_fp), inplace=True)
sources_final.append(self.CBAM1(conv4_fp))
# FC7层融合结果
fc7_fp = torch.cat((F.relu(self.bn(self.DilationConv_512_128(sources[1])), inplace=True),
F.relu(self.conv_1024_256(sources[3]), inplace=True),
F.relu(self.DeConv_512_128(sources[4]), inplace=True)), 1)
# sources_final.append(F.relu( self.smooth(fc7_fp) , inplace=True))
fc7_fp = F.relu(self.smooth(fc7_fp), inplace=True)
sources_final.append(self.CBAM2(fc7_fp))
# conv8_2层融合结果
conv8_fp = torch.cat((F.relu(self.bn(self.DilationConv_512_128_2(sources[2])), inplace=True),
F.relu(self.conv_512_256_2(sources[4]), inplace=True),
F.relu(self.DeConv_256_128_2(sources[5]), inplace=True)), 1)
# sources_final.append(F.relu( self.smooth(conv8_fp) , inplace=True))
conv8_fp = F.relu(self.smooth(conv8_fp), inplace=True)
sources_final.append(self.CBAM3(conv8_fp))
# 保存 conv9_2、conv10_2、conv11_2
sources_final.append(self.CBAM4(sources[5]))
sources_final.append(self.CBAM5(sources[6]))
sources_final.append(self.CBAM6(sources[7]))
# apply multibox head to source layers
for (x, l, c) in zip(sources_final, self.loc, self.conf):
loc.append(l(x).permute(0, 2, 3, 1).contiguous())
conf.append(c(x).permute(0, 2, 3, 1).contiguous())
loc = torch.cat([o.view(o.size(0), -1) for o in loc], 1)
conf = torch.cat([o.view(o.size(0), -1) for o in conf], 1)
if self.phase == "test":
output = self.detect(
loc.view(loc.size(0), -1, 4), # loc preds
self.softmax(conf.view(conf.size(0), -1,
self.num_classes)), # conf preds
self.priors.type(type(x.data)) # default boxes
)
else:
output = (
loc.view(loc.size(0), -1, 4),
conf.view(conf.size(0), -1, self.num_classes),
self.priors
)
return output
def load_weights(self, base_file):
other, ext = os.path.splitext(base_file)
if ext == '.pkl' or '.pth':
print('Loading weights into state dict...')
self.load_state_dict(torch.load(base_file,
map_location=lambda storage, loc: storage))
print('Finished!')
else:
print('Sorry only .pth and .pkl files supported.')
# This function is derived from torchvision VGG make_layers()
# https://github.com/pytorch/vision/blob/master/torchvision/models/vgg.py
def vgg(cfg, i, batch_norm=False):
layers = []
in_channels = i
for v in cfg:
if v == 'M':
layers += [nn.MaxPool2d(kernel_size=2, stride=2)]
elif v == 'C':
layers += [nn.MaxPool2d(kernel_size=2, stride=2, ceil_mode=True)]
else:
conv2d = nn.Conv2d(in_channels, v, kernel_size=3, padding=1)
if batch_norm:
layers += [conv2d, nn.BatchNorm2d(v), nn.ReLU(inplace=True)]
else:
layers += [conv2d, nn.ReLU(inplace=True)]
in_channels = v
pool5 = nn.MaxPool2d(kernel_size=3, stride=1, padding=1)
conv6 = nn.Conv2d(512, 1024, kernel_size=3, padding=6, dilation=6)
conv7 = nn.Conv2d(1024, 1024, kernel_size=1)
layers += [pool5, conv6,
nn.ReLU(inplace=True), conv7, nn.ReLU(inplace=True)]
return layers
def add_extras(cfg, i, batch_norm=False):
# Extra layers added to VGG for feature scaling
layers = []
in_channels = i
flag = False
for k, v in enumerate(cfg):
if in_channels != 'S':
if v == 'S':
layers += [nn.Conv2d(in_channels, cfg[k + 1],
kernel_size=(1, 3)[flag], stride=2, padding=1)]
else:
layers += [nn.Conv2d(in_channels, v, kernel_size=(1, 3)[flag])]
flag = not flag
in_channels = v
return layers
def multibox(vgg, extra_layers, cfg, num_classes):
loc_layers = []
conf_layers = []
# 传入的修改过的vgg网络用于预测的网络是21层以及 倒数第二层
vgg_source = [21, -2]
for k, v in enumerate(vgg_source):
# 按照fp-ssd论文,将1024改为512通道
if k == 1:
in_channels = 512
else:
in_channels = vgg[v].out_channels
loc_layers += [nn.Conv2d(in_channels,
cfg[k] * 4, kernel_size=3, padding=1)]
conf_layers += [nn.Conv2d(in_channels,
cfg[k] * num_classes, kernel_size=3, padding=1)]
# [x::y] 从下标x开始,每隔y取值
# 论文中新增层也是每隔一个层添加一个预测层
# 将新增的额外层中的预测层也添加上 start=2:下标起始位置
for k, v in enumerate(extra_layers[1::2], 2):
loc_layers += [nn.Conv2d(v.out_channels, cfg[k]
* 4, kernel_size=3, padding=1)]
conf_layers += [nn.Conv2d(v.out_channels, cfg[k]
* num_classes, kernel_size=3, padding=1)]
return vgg, extra_layers, (loc_layers, conf_layers)
base = {
'300': [64, 64, 'M', 128, 128, 'M', 256, 256, 256, 'C', 512, 512, 512, 'M',
512, 512, 512],
'512': [],
}
extras = {
'300': [256, 'S', 512, 128, 'S', 256, 128, 256, 128, 256],
'512': [],
}
mbox = {
'300': [4, 6, 6, 6, 4, 4], # number of boxes per feature map location
'512': [],
}
def build_ssd(phase, size=300, num_classes=2):
if phase != "test" and phase != "train":
print("ERROR: Phase: " + phase + " not recognized")
return
if size != 300:
print("ERROR: You specified size " + repr(size) + ". However, " +
"currently only SSD300 (size=300) is supported!")
return
base_, extras_, head_ = multibox(vgg(base[str(size)], 3),
add_extras(extras[str(size)], 1024),
mbox[str(size)], num_classes)
return SSD(phase, size, base_, extras_, head_, num_classes)