forked from gopiraj15/OpenCV-journey
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathEllipticalHoughTransform.cpp
356 lines (300 loc) · 10 KB
/
EllipticalHoughTransform.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
#include<opencv2\opencv.hpp>
#include<cmath>
#include<iostream>
#define SQR(x) x*x
using namespace cv;
using namespace std;
struct HoughParams
{
//minimum and Maximum size of the major axis of the ellipse
int minMajAxisLength, maxMajAxisLength;
//minimum and maximum angle span of the ellipse
int Angle, angleSpan;
//minimum Ratio between the minor axis and the major axis of the ellipse
double AxisRatio;
double smoothStdDev;
bool uniformWeights;
//number of best fit parameters
int numBest;
//for Randomizing the Hough Transform
int randomize;
//Constructor for Loading default values
HoughParams()
{
minMajAxisLength = 100;
maxMajAxisLength = 200;
Angle = 0;
angleSpan = 0;
AxisRatio = 0.5;
uniformWeights = true;
numBest = 3;
randomize = 2;
smoothStdDev = 1;
}
//Constructor to get parameters from the default ellipse
HoughParams(const cv::RotatedRect& ell)
{
double MajAxis = ell.size.width > ell.size.height ? ell.size.width : ell.size.height;
double MinAxis = ell.size.width < ell.size.height ? ell.size.width : ell.size.height;
minMajAxisLength = round(MajAxis * 0.75);
maxMajAxisLength = round(MajAxis * 1.25);
Angle = round(ell.angle);
angleSpan = 20;
AxisRatio = 0.5;
smoothStdDev = 1;
uniformWeights = true;
numBest = 3;
randomize = 2;
}
~HoughParams()
{
}
};
//This function performs full one dimensional convolution
template<typename T>
void conv(std::vector<T> const &f, std::vector<T> const &g, std::vector<T>& out)
{
int const nf = f.size();
int const ng = g.size();
int const n = nf + ng - 1; //convolution length
out.resize(n, T());
for (auto i(0); i < n; ++i)
{
int const jmn = (i >= ng - 1) ? i - (ng - 1) : 0;
int const jmx = (i < nf - 1) ? i : nf - 1;
for (auto j(jmn); j <= jmx; ++j)
{
out[i] += (f[j] * g[i - j]);
}//end for
}//end for
}//end conv
// Overview:
// --------
// Fits an ellipse by examining all possible major axes(all pairs of points) and
// getting the minor axis using Hough transform.The algorithm complexity depends on
// the number of valid non - zero points, therefore it is beneficial to provide as many
// restrictions in the "params" input arguments as possible if there is any prior
// knowledge about the problem.
//
// The code can be quite memory intensive.If you get out of memory errors, either
// downsample the input image or somehow decrease the number of non - zero points in it.
// It can deal with big amount of noise but can have severe problem with occlusions(major axis
// end points need to be visible)
//
// Input arguments :
// --------
// src
// -One - channel input image(greyscale or binary).
// params
// -Parameters of the algorithm :
// minMajorAxis : Minimal length of major axis accepted.
// maxMajorAxis : Maximal length of major axis accepted.
// Angle, AngleSpanSpan : Specification of restriction on the angle of the major axis in degrees.
// If rotationSpan is in(0, 90), only angles within[rotation - rotationSpan,
// rotation + rotationSpan] are accepted.
// AxisRatio : Minimal aspect ratio of an ellipse(in(0, 1))
// randomize : Subsampling of all possible point pairs.Instead of examining all N*N pairs, runs
// only on N*randomize pairs.If 0, randomization is turned off.
// numBest : Top numBest to return
// smoothStddev : In order to provide more stability of the solution, the accumulator is convolved with
// a gaussian kernel.This parameter specifies its standard deviation in pixels.
//
// Return value :
// --------
// Returns a matrix of best fits.Each row(there are params.numBest of them) contains six elements :
// [x0 y0 a b alpha score] being the center of the ellipse, its major and minor axis, its angle in degrees and score.
//
// Based on :
// --------
// -"A New Efficient Ellipse Detection Method" (Yonghong Xie Qiang, Qiang Ji / 2002)
// -random subsampling inspired by "Randomized Hough Transform for Ellipse Detection with Result Clustering"
// (CA Basca, M Talos, R Brad / 2005)
//
//TO DO:
//To include exit parameters when the algorithm fails
void EllipticalHoughTransform_1(cv::Mat& src, HoughParams params, cv::RotatedRect& finalEll)
{
double eps = 0.0001;
Mat1f bestFits = Mat::zeros(params.numBest, 6, CV_32FC1);
params.angleSpan = std::min(params.angleSpan, 90);
Mat1f h = getGaussianKernel(7, params.smoothStdDev);
vector<double>H;
for (int i = 0; i < h.rows; ++i) H.push_back(h(i, 0));
h.release();
vector<int> X, Y;
for (int i = 0; i < src.rows; ++i)
{
for (int j = 0; j < src.cols; ++j)
{
if (src.at<uchar>(i, j) == 0) continue;
X.push_back(i);
Y.push_back(j);
}
}
int N = X.size();
vector<int> idx, I, J;
Mat1f distsSq = Mat::zeros(N, N, CV_32FC1);
double minmajsq = pow(params.minMajAxisLength, 2);
double maxmajsq = pow(params.maxMajAxisLength, 2);
//computing pairwise distances between points and filter
for (int i = 0; i < N; ++i)
{
for (int j = 0; j < N; ++j)
{
double d = pow(X[j] - X[i], 2) + pow(Y[j] - Y[i], 2);
distsSq(i, j) = d;
if (d < minmajsq || d > maxmajsq)continue;
if (j > i) continue;
I.push_back(j);
J.push_back(i);
}
}
//computing pairwise angles and filter
if (params.angleSpan > 0)
{
double tmp = (params.Angle - params.angleSpan)*CV_PI / 180;
double tanLo = round(tan((params.Angle - params.angleSpan)*CV_PI / 180));
double tanHi = round(tan((params.Angle + params.angleSpan)*CV_PI / 180));
if (tanLo == 90 || tanLo == -90 || tanLo == 270 || tanLo == -270 || tanLo > 360 || tanLo < -360) tanLo = numeric_limits<double>::infinity();
if (tanHi == 90 || tanHi == -90 || tanHi == 270 || tanHi == -270 || tanHi > 360 || tanHi <-360) tanHi = numeric_limits<double>::infinity();
for (int i = 0; i < I.size(); ++i)
{
double tangents;
if ((X[I[i]] - X[J[i]]) == 0) tangents = numeric_limits<double>::infinity();
else tangents = (Y[I[i]] - Y[J[i]]) / (X[I[i]] - X[J[i]]);
if (abs(tanLo) < abs(tanHi))
{
if (tangents > tanLo && tangents < tanHi) idx.push_back(i);
}
else
{
if (tangents > tanLo || tangents < tanHi) idx.push_back(i);
}
}
vector<int> tmpI, tmpJ;
tmpI = I; tmpJ = J;
I.clear(); J.clear();
for (int i = 0; i < idx.size(); ++i)
{
I.push_back(tmpI[idx[i]]);
J.push_back(tmpJ[idx[i]]);
}
tmpI.clear(); tmpJ.clear();
idx.clear();
}
vector<int> pairSubset;
for (int i = 0; i < I.size(); ++i) pairSubset.push_back(i);
//computing random choice and filter
if (params.randomize > 0)
{
randShuffle(pairSubset);
int num = std::min((int)pairSubset.size(), N*params.randomize);
pairSubset.resize(num);
}
//check out all hypotheses
for (int p = 0; p < pairSubset.size(); ++p)
{
double x1, x2, y1, y2;
x1 = X[I[pairSubset[p]]]; y1 = Y[I[pairSubset[p]]];
x2 = X[J[pairSubset[p]]]; y2 = Y[J[pairSubset[p]]];
//Computing the centers
double x0 = (x1 + x2) / 2;
double y0 = (y1 + y2) / 2;
//Computing the major axis
double aSq = distsSq(I[pairSubset[p]], J[pairSubset[p]]) / 4;
vector<double> thirdPtDistsSq, K(X.size()), cosTau, sinTauSq, fSq;
//get minor ax propositions for all other points
for (int i = 0; i < X.size(); ++i)
{
double tmp = pow(X[i] - x0, 2) + pow(Y[i] - y0, 2);
thirdPtDistsSq.push_back(tmp);
if (tmp > aSq) continue;
K[i] = 1;
fSq.push_back(pow(X[i] - x2, 2) + pow(Y[i] - y2, 2));
}
int num = 0;
for (int i = 0; i < K.size(); ++i)
{
if (K[i] == 0) continue;
double tmp = (aSq + thirdPtDistsSq[i] - fSq[num++]) / (2 * sqrt(aSq*thirdPtDistsSq[i]));
tmp = std::min(1.0, std::max(-1.0, tmp));
cosTau.push_back(tmp);
sinTauSq.push_back(1 - SQR(tmp));
}
num = 0;
vector<double> b;
//proper bins for b
for (int i = 0; i < K.size(); ++i)
{
if (K[i] == 0)continue;
b.push_back(sqrt((aSq * thirdPtDistsSq[i] * sinTauSq[num]) / (aSq - thirdPtDistsSq[i] * pow(cosTau[num], 2) + eps)));
num++;
}
thirdPtDistsSq.clear();
fSq.clear();
K.clear();
sinTauSq.clear();
cosTau.clear();
vector<int> idxs;
for (int i = 0; i < b.size(); ++i) idxs.push_back(ceil(b[i] + eps));
b.clear();
vector<double> accumarray, tmpaccum(2 + *max_element(idxs.begin(), idxs.end()));
for (int i = 0; i < idxs.size(); i++) tmpaccum[idxs[i]]++;
idxs.clear();
//a bit of smoothing and finding the most busy bin
conv(tmpaccum, H, accumarray);
tmpaccum.clear();
for (int i = 0; i < H.size() / 2; ++i)
{
accumarray.erase(accumarray.begin());
accumarray.erase(accumarray.begin() + accumarray.size() - 1);
}
for (int i = 0; i < accumarray.size(); ++i)
{
if (i > ceil(sqrt(aSq)*params.AxisRatio)) break;
accumarray[i] = 0;
}
double score = *max_element(accumarray.begin(), accumarray.end());
int index = distance(accumarray.begin(), max_element(accumarray.begin(), accumarray.end()));
accumarray.clear();
//keeping only the params.numBest best hypothesis(no non - maxima suppresion)
if (bestFits(params.numBest - 1, params.numBest - 1) < score)
{
bestFits(params.numBest - 1, 0) = x0;
bestFits(params.numBest - 1, 1) = y0;
bestFits(params.numBest - 1, 2) = sqrt(aSq);
bestFits(params.numBest - 1, 3) = index;
bestFits(params.numBest - 1, 4) = atan((y1 - y2) / (x1 - x2)) * 180 / CV_PI;
bestFits(params.numBest - 1, 5) = score;
if (params.numBest > 1)
{
cv::Mat one = bestFits.col(5);
cv::Mat1i idx;
cv::sortIdx(one, idx, cv::SORT_EVERY_COLUMN + cv::SORT_DESCENDING);
cv::Mat result(bestFits.rows, bestFits.cols, bestFits.type());
for (int i = 0; i < idx.rows; ++i)
{
bestFits.row(idx(i, 0)).copyTo(result.row(i));
}
bestFits = result.clone();
result.release();
idx.release();
one.release();
}
}
//cout << bestFits << endl;
}
distsSq.release();
pairSubset.clear();
I.clear();
J.clear();
X.clear();
Y.clear();
finalEll.center.x = round(bestFits(0, 1));
finalEll.center.y = round(bestFits(0, 0));
finalEll.size.height = 2 * bestFits(0, 2);
finalEll.size.width = 2 * bestFits(0, 3);
finalEll.angle = bestFits(0, 4);
std::cout << bestFits << endl;
bestFits.release();
}