-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathspeed_common_functions.cpp
277 lines (256 loc) · 13.6 KB
/
speed_common_functions.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
//近似值
union Approximation
{
double Value;
int X[2];
};
// 函数1: 将数据截断在Byte数据类型内。
// 参考: http://www.cnblogs.com/zyl910/archive/2012/03/12/noifopex1.html
// 简介: 用位掩码做饱和处理,用带符号右移生成掩码。
unsigned char ClampToByte(int Value){
return ((Value | ((signed int)(255 - Value) >> 31)) & ~((signed int)Value >> 31));
}
//函数2: 将数据截断在指定范围内
//参考: 无
//简介: 无
int ClampToInt(int Value, int Min, int Max) {
if (Value < Min) return Min;
else if (Value > Max) return Max;
else return Value;
}
//函数3: 整数除以255
//参考: 无
//简介: 移位
int Div255(int Value) {
return (((Value >> 8) + Value + 1) >> 8);
}
//函数4: 取绝对值
//参考: https://oi-wiki.org/math/bit/
//简介: 比n > 0 ? n : -n 快
int Abs(int n) {
return (n ^ (n >> 31)) - (n >> 31);
/* n>>31 取得 n 的符号,若 n 为正数,n>>31 等于 0,若 n 为负数,n>>31 等于 - 1
若 n 为正数 n^0=0, 数不变,若 n 为负数有 n^-1
需要计算 n 和 - 1 的补码,然后进行异或运算,
结果 n 变号并且为 n 的绝对值减 1,再减去 - 1 就是绝对值 */
}
//函数5: 四舍五入
//参考: 无
//简介: 无
double Round(double V)
{
return (V > 0.0) ? floor(V + 0.5) : Round(V - 0.5);
}
//函数6: 返回-1到1之间的随机数
//参考: 无
//简介: 无
double Rand()
{
return (double)rand() / (RAND_MAX + 1.0);
}
//函数7: Pow函数的近似计算,针对double类型和float类型
//参考: http://www.cvchina.info/2010/03/19/log-pow-exp-approximation/
//参考: http://martin.ankerl.com/2007/10/04/optimized-pow-approximation-for-java-and-c-c/
//简介: 这个函数只是为了加速的近似计算,有5%-12%不等的误差
double Pow(double X, double Y)
{
Approximation V = { X };
V.X[1] = (int)(Y * (V.X[1] - 1072632447) + 1072632447);
V.X[0] = 0;
return V.Value;
}
float Pow(float X, float Y)
{
Approximation V = { X };
V.X[1] = (int)(Y * (V.X[1] - 1072632447) + 1072632447);
V.X[0] = 0;
return (float)V.Value;
}
//函数8: Exp函数的近似计算,针对double类型和float类型
double Exp(double Y) // 用联合体的方式的速度要快些
{
Approximation V;
V.X[1] = (int)(Y * 1485963 + 1072632447);
V.X[0] = 0;
return V.Value;
}
float Exp(float Y) // 用联合体的方式的速度要快些
{
Approximation V;
V.X[1] = (int)(Y * 1485963 + 1072632447);
V.X[0] = 0;
return (float)V.Value;
}
// 函数9: Pow函数更准一点的近似计算,但是速度会稍慢
// http://martin.ankerl.com/2012/01/25/optimized-approximative-pow-in-c-and-cpp/
// Besides that, I also have now a slower approximation that has much less error
// when the exponent is larger than 1. It makes use exponentiation by squaring,
// which is exact for the integer part of the exponent, and uses only the exponent’s fraction for the approximation:
// should be much more precise with large Y
double PrecisePow(double X, double Y){
// calculate approximation with fraction of the exponent
int e = (int)Y;
Approximation V = { X };
V.X[1] = (int)((Y - e) * (V.X[1] - 1072632447) + 1072632447);
V.X[0] = 0;
// exponentiation by squaring with the exponent's integer part
// double r = u.d makes everything much slower, not sure why
double r = 1.0;
while (e)
{
if (e & 1) r *= X;
X *= X;
e >>= 1;
}
return r * V.Value;
}
//函数10: 返回Min到Max之间的随机数
//参考: 无
//简介: Min为随机数的最小值,Max为随机数的最大值
int Random(int Min, int Max){
return rand() % (Max + 1 - Min) + Min;
}
//函数11: 符号函数
//参考: 无
//简介: 无
int sgn(int X){
if (X > 0) return 1;
if (X < 0) return -1;
return 0;
}
//函数12: 获取某个整形变量对应的颜色值
//参考: 无
//简介: 无
void GetRGB(int Color, int *R, int *G, int *B){
*R = Color & 255;
*G = (Color & 65280) / 256;
*B = (Color & 16711680) / 65536;
}
//函数13: 牛顿法近似获取指定数字的算法平方根
//参考: https://www.cnblogs.com/qlky/p/7735145.html
//简介: 仍然是近似算法,近似出了指定数字的平方根
float Sqrt(float X)
{
float HalfX = 0.5f * X; // 对double类型的数字无效
int I = *(int*)&X; // get bits for floating VALUE
I = 0x5f375a86 - (I >> 1); // gives initial guess y0
X = *(float*)&I; // convert bits BACK to float
X = X * (1.5f - HalfX * X * X); // Newton step, repeating increases accuracy
X = X * (1.5f - HalfX * X * X); // Newton step, repeating increases accuracy
X = X * (1.5f - HalfX * X * X); // Newton step, repeating increases accuracy
return 1 / X;
}
//函数14: 无符号短整形直方图数据相加,即是Y = X + Y
//参考: 无
//简介: SSE优化
void HistgramAddShort(unsigned short *X, unsigned short *Y)
{
*(__m128i*)(Y + 0) = _mm_add_epi16(*(__m128i*)&Y[0], *(__m128i*)&X[0]); // 不要想着用自己写的汇编超过他的速度了,已经试过了
*(__m128i*)(Y + 8) = _mm_add_epi16(*(__m128i*)&Y[8], *(__m128i*)&X[8]);
*(__m128i*)(Y + 16) = _mm_add_epi16(*(__m128i*)&Y[16], *(__m128i*)&X[16]);
*(__m128i*)(Y + 24) = _mm_add_epi16(*(__m128i*)&Y[24], *(__m128i*)&X[24]);
*(__m128i*)(Y + 32) = _mm_add_epi16(*(__m128i*)&Y[32], *(__m128i*)&X[32]);
*(__m128i*)(Y + 40) = _mm_add_epi16(*(__m128i*)&Y[40], *(__m128i*)&X[40]);
*(__m128i*)(Y + 48) = _mm_add_epi16(*(__m128i*)&Y[48], *(__m128i*)&X[48]);
*(__m128i*)(Y + 56) = _mm_add_epi16(*(__m128i*)&Y[56], *(__m128i*)&X[56]);
*(__m128i*)(Y + 64) = _mm_add_epi16(*(__m128i*)&Y[64], *(__m128i*)&X[64]);
*(__m128i*)(Y + 72) = _mm_add_epi16(*(__m128i*)&Y[72], *(__m128i*)&X[72]);
*(__m128i*)(Y + 80) = _mm_add_epi16(*(__m128i*)&Y[80], *(__m128i*)&X[80]);
*(__m128i*)(Y + 88) = _mm_add_epi16(*(__m128i*)&Y[88], *(__m128i*)&X[88]);
*(__m128i*)(Y + 96) = _mm_add_epi16(*(__m128i*)&Y[96], *(__m128i*)&X[96]);
*(__m128i*)(Y + 104) = _mm_add_epi16(*(__m128i*)&Y[104], *(__m128i*)&X[104]);
*(__m128i*)(Y + 112) = _mm_add_epi16(*(__m128i*)&Y[112], *(__m128i*)&X[112]);
*(__m128i*)(Y + 120) = _mm_add_epi16(*(__m128i*)&Y[120], *(__m128i*)&X[120]);
*(__m128i*)(Y + 128) = _mm_add_epi16(*(__m128i*)&Y[128], *(__m128i*)&X[128]);
*(__m128i*)(Y + 136) = _mm_add_epi16(*(__m128i*)&Y[136], *(__m128i*)&X[136]);
*(__m128i*)(Y + 144) = _mm_add_epi16(*(__m128i*)&Y[144], *(__m128i*)&X[144]);
*(__m128i*)(Y + 152) = _mm_add_epi16(*(__m128i*)&Y[152], *(__m128i*)&X[152]);
*(__m128i*)(Y + 160) = _mm_add_epi16(*(__m128i*)&Y[160], *(__m128i*)&X[160]);
*(__m128i*)(Y + 168) = _mm_add_epi16(*(__m128i*)&Y[168], *(__m128i*)&X[168]);
*(__m128i*)(Y + 176) = _mm_add_epi16(*(__m128i*)&Y[176], *(__m128i*)&X[176]);
*(__m128i*)(Y + 184) = _mm_add_epi16(*(__m128i*)&Y[184], *(__m128i*)&X[184]);
*(__m128i*)(Y + 192) = _mm_add_epi16(*(__m128i*)&Y[192], *(__m128i*)&X[192]);
*(__m128i*)(Y + 200) = _mm_add_epi16(*(__m128i*)&Y[200], *(__m128i*)&X[200]);
*(__m128i*)(Y + 208) = _mm_add_epi16(*(__m128i*)&Y[208], *(__m128i*)&X[208]);
*(__m128i*)(Y + 216) = _mm_add_epi16(*(__m128i*)&Y[216], *(__m128i*)&X[216]);
*(__m128i*)(Y + 224) = _mm_add_epi16(*(__m128i*)&Y[224], *(__m128i*)&X[224]);
*(__m128i*)(Y + 232) = _mm_add_epi16(*(__m128i*)&Y[232], *(__m128i*)&X[232]);
*(__m128i*)(Y + 240) = _mm_add_epi16(*(__m128i*)&Y[240], *(__m128i*)&X[240]);
*(__m128i*)(Y + 248) = _mm_add_epi16(*(__m128i*)&Y[248], *(__m128i*)&X[248]);
}
//函数15: 无符号短整形直方图数据相减,即是Y = Y - X
//参考: 无
//简介: SSE优化
void HistgramSubShort(unsigned short *X, unsigned short *Y)
{
*(__m128i*)(Y + 0) = _mm_sub_epi16(*(__m128i*)&Y[0], *(__m128i*)&X[0]);
*(__m128i*)(Y + 8) = _mm_sub_epi16(*(__m128i*)&Y[8], *(__m128i*)&X[8]);
*(__m128i*)(Y + 16) = _mm_sub_epi16(*(__m128i*)&Y[16], *(__m128i*)&X[16]);
*(__m128i*)(Y + 24) = _mm_sub_epi16(*(__m128i*)&Y[24], *(__m128i*)&X[24]);
*(__m128i*)(Y + 32) = _mm_sub_epi16(*(__m128i*)&Y[32], *(__m128i*)&X[32]);
*(__m128i*)(Y + 40) = _mm_sub_epi16(*(__m128i*)&Y[40], *(__m128i*)&X[40]);
*(__m128i*)(Y + 48) = _mm_sub_epi16(*(__m128i*)&Y[48], *(__m128i*)&X[48]);
*(__m128i*)(Y + 56) = _mm_sub_epi16(*(__m128i*)&Y[56], *(__m128i*)&X[56]);
*(__m128i*)(Y + 64) = _mm_sub_epi16(*(__m128i*)&Y[64], *(__m128i*)&X[64]);
*(__m128i*)(Y + 72) = _mm_sub_epi16(*(__m128i*)&Y[72], *(__m128i*)&X[72]);
*(__m128i*)(Y + 80) = _mm_sub_epi16(*(__m128i*)&Y[80], *(__m128i*)&X[80]);
*(__m128i*)(Y + 88) = _mm_sub_epi16(*(__m128i*)&Y[88], *(__m128i*)&X[88]);
*(__m128i*)(Y + 96) = _mm_sub_epi16(*(__m128i*)&Y[96], *(__m128i*)&X[96]);
*(__m128i*)(Y + 104) = _mm_sub_epi16(*(__m128i*)&Y[104], *(__m128i*)&X[104]);
*(__m128i*)(Y + 112) = _mm_sub_epi16(*(__m128i*)&Y[112], *(__m128i*)&X[112]);
*(__m128i*)(Y + 120) = _mm_sub_epi16(*(__m128i*)&Y[120], *(__m128i*)&X[120]);
*(__m128i*)(Y + 128) = _mm_sub_epi16(*(__m128i*)&Y[128], *(__m128i*)&X[128]);
*(__m128i*)(Y + 136) = _mm_sub_epi16(*(__m128i*)&Y[136], *(__m128i*)&X[136]);
*(__m128i*)(Y + 144) = _mm_sub_epi16(*(__m128i*)&Y[144], *(__m128i*)&X[144]);
*(__m128i*)(Y + 152) = _mm_sub_epi16(*(__m128i*)&Y[152], *(__m128i*)&X[152]);
*(__m128i*)(Y + 160) = _mm_sub_epi16(*(__m128i*)&Y[160], *(__m128i*)&X[160]);
*(__m128i*)(Y + 168) = _mm_sub_epi16(*(__m128i*)&Y[168], *(__m128i*)&X[168]);
*(__m128i*)(Y + 176) = _mm_sub_epi16(*(__m128i*)&Y[176], *(__m128i*)&X[176]);
*(__m128i*)(Y + 184) = _mm_sub_epi16(*(__m128i*)&Y[184], *(__m128i*)&X[184]);
*(__m128i*)(Y + 192) = _mm_sub_epi16(*(__m128i*)&Y[192], *(__m128i*)&X[192]);
*(__m128i*)(Y + 200) = _mm_sub_epi16(*(__m128i*)&Y[200], *(__m128i*)&X[200]);
*(__m128i*)(Y + 208) = _mm_sub_epi16(*(__m128i*)&Y[208], *(__m128i*)&X[208]);
*(__m128i*)(Y + 216) = _mm_sub_epi16(*(__m128i*)&Y[216], *(__m128i*)&X[216]);
*(__m128i*)(Y + 224) = _mm_sub_epi16(*(__m128i*)&Y[224], *(__m128i*)&X[224]);
*(__m128i*)(Y + 232) = _mm_sub_epi16(*(__m128i*)&Y[232], *(__m128i*)&X[232]);
*(__m128i*)(Y + 240) = _mm_sub_epi16(*(__m128i*)&Y[240], *(__m128i*)&X[240]);
*(__m128i*)(Y + 248) = _mm_sub_epi16(*(__m128i*)&Y[248], *(__m128i*)&X[248]);
}
//函数16: 无符号短整形直方图数据相加减,即是Z = Z + Y - X
//参考: 无
//简介: SSE优化
void HistgramSubAddShort(unsigned short *X, unsigned short *Y, unsigned short *Z)
{
*(__m128i*)(Z + 0) = _mm_sub_epi16(_mm_add_epi16(*(__m128i*)&Y[0], *(__m128i*)&Z[0]), *(__m128i*)&X[0]); // 不要想着用自己写的汇编超过他的速度了,已经试过了
*(__m128i*)(Z + 8) = _mm_sub_epi16(_mm_add_epi16(*(__m128i*)&Y[8], *(__m128i*)&Z[8]), *(__m128i*)&X[8]);
*(__m128i*)(Z + 16) = _mm_sub_epi16(_mm_add_epi16(*(__m128i*)&Y[16], *(__m128i*)&Z[16]), *(__m128i*)&X[16]);
*(__m128i*)(Z + 24) = _mm_sub_epi16(_mm_add_epi16(*(__m128i*)&Y[24], *(__m128i*)&Z[24]), *(__m128i*)&X[24]);
*(__m128i*)(Z + 32) = _mm_sub_epi16(_mm_add_epi16(*(__m128i*)&Y[32], *(__m128i*)&Z[32]), *(__m128i*)&X[32]);
*(__m128i*)(Z + 40) = _mm_sub_epi16(_mm_add_epi16(*(__m128i*)&Y[40], *(__m128i*)&Z[40]), *(__m128i*)&X[40]);
*(__m128i*)(Z + 48) = _mm_sub_epi16(_mm_add_epi16(*(__m128i*)&Y[48], *(__m128i*)&Z[48]), *(__m128i*)&X[48]);
*(__m128i*)(Z + 56) = _mm_sub_epi16(_mm_add_epi16(*(__m128i*)&Y[56], *(__m128i*)&Z[56]), *(__m128i*)&X[56]);
*(__m128i*)(Z + 64) = _mm_sub_epi16(_mm_add_epi16(*(__m128i*)&Y[64], *(__m128i*)&Z[64]), *(__m128i*)&X[64]);
*(__m128i*)(Z + 72) = _mm_sub_epi16(_mm_add_epi16(*(__m128i*)&Y[72], *(__m128i*)&Z[72]), *(__m128i*)&X[72]);
*(__m128i*)(Z + 80) = _mm_sub_epi16(_mm_add_epi16(*(__m128i*)&Y[80], *(__m128i*)&Z[80]), *(__m128i*)&X[80]);
*(__m128i*)(Z + 88) = _mm_sub_epi16(_mm_add_epi16(*(__m128i*)&Y[88], *(__m128i*)&Z[88]), *(__m128i*)&X[88]);
*(__m128i*)(Z + 96) = _mm_sub_epi16(_mm_add_epi16(*(__m128i*)&Y[96], *(__m128i*)&Z[96]), *(__m128i*)&X[96]);
*(__m128i*)(Z + 104) = _mm_sub_epi16(_mm_add_epi16(*(__m128i*)&Y[104], *(__m128i*)&Z[104]), *(__m128i*)&X[104]);
*(__m128i*)(Z + 112) = _mm_sub_epi16(_mm_add_epi16(*(__m128i*)&Y[112], *(__m128i*)&Z[112]), *(__m128i*)&X[112]);
*(__m128i*)(Z + 120) = _mm_sub_epi16(_mm_add_epi16(*(__m128i*)&Y[120], *(__m128i*)&Z[120]), *(__m128i*)&X[120]);
*(__m128i*)(Z + 128) = _mm_sub_epi16(_mm_add_epi16(*(__m128i*)&Y[128], *(__m128i*)&Z[128]), *(__m128i*)&X[128]);
*(__m128i*)(Z + 136) = _mm_sub_epi16(_mm_add_epi16(*(__m128i*)&Y[136], *(__m128i*)&Z[136]), *(__m128i*)&X[136]);
*(__m128i*)(Z + 144) = _mm_sub_epi16(_mm_add_epi16(*(__m128i*)&Y[144], *(__m128i*)&Z[144]), *(__m128i*)&X[144]);
*(__m128i*)(Z + 152) = _mm_sub_epi16(_mm_add_epi16(*(__m128i*)&Y[152], *(__m128i*)&Z[152]), *(__m128i*)&X[152]);
*(__m128i*)(Z + 160) = _mm_sub_epi16(_mm_add_epi16(*(__m128i*)&Y[160], *(__m128i*)&Z[160]), *(__m128i*)&X[160]);
*(__m128i*)(Z + 168) = _mm_sub_epi16(_mm_add_epi16(*(__m128i*)&Y[168], *(__m128i*)&Z[168]), *(__m128i*)&X[168]);
*(__m128i*)(Z + 176) = _mm_sub_epi16(_mm_add_epi16(*(__m128i*)&Y[176], *(__m128i*)&Z[176]), *(__m128i*)&X[176]);
*(__m128i*)(Z + 184) = _mm_sub_epi16(_mm_add_epi16(*(__m128i*)&Y[184], *(__m128i*)&Z[184]), *(__m128i*)&X[184]);
*(__m128i*)(Z + 192) = _mm_sub_epi16(_mm_add_epi16(*(__m128i*)&Y[192], *(__m128i*)&Z[192]), *(__m128i*)&X[192]);
*(__m128i*)(Z + 200) = _mm_sub_epi16(_mm_add_epi16(*(__m128i*)&Y[200], *(__m128i*)&Z[200]), *(__m128i*)&X[200]);
*(__m128i*)(Z + 208) = _mm_sub_epi16(_mm_add_epi16(*(__m128i*)&Y[208], *(__m128i*)&Z[208]), *(__m128i*)&X[208]);
*(__m128i*)(Z + 216) = _mm_sub_epi16(_mm_add_epi16(*(__m128i*)&Y[216], *(__m128i*)&Z[216]), *(__m128i*)&X[216]);
*(__m128i*)(Z + 224) = _mm_sub_epi16(_mm_add_epi16(*(__m128i*)&Y[224], *(__m128i*)&Z[224]), *(__m128i*)&X[224]);
*(__m128i*)(Z + 232) = _mm_sub_epi16(_mm_add_epi16(*(__m128i*)&Y[232], *(__m128i*)&Z[232]), *(__m128i*)&X[232]);
*(__m128i*)(Z + 240) = _mm_sub_epi16(_mm_add_epi16(*(__m128i*)&Y[240], *(__m128i*)&Z[240]), *(__m128i*)&X[240]);
*(__m128i*)(Z + 248) = _mm_sub_epi16(_mm_add_epi16(*(__m128i*)&Y[248], *(__m128i*)&Z[248]), *(__m128i*)&X[248]);
}