MedTinySharp is a symbolic model-checking library for C# built on top of Zen, extending C# with MedTiny syntax to facilitate the modeling of distributed algorithms directly in C#. This library provides the following key contributions:
- Transforms hierarchical automata into a standard labeled transition system and integrates LTL (Linear Temporal Logic) for specifying properties.
- Supports multiple symbolic model-checking backends, including a bounded model-checking (BMC) algorithm that unrolls transition loops into Boolean formulas for analysis using the Z3 solver.
- Encodes nearly all C# primitive types and commonly used data structures (e.g., sets) into Z3 expressions, maintaining full compatibility with native C#. MedTinySharp is a true C# library, allowing developers to write and verify distributed algorithms entirely within standard C#.
Just add the project to your visual studio solution.
The input to the project is the MedtinySharp program, which is first transformed into a Label Transition System (LTS) using the Roslyn API and the Automaton Flattening algorithm. During the LTS verification process, we employ several advanced model checking techniques, including Bounded Model Checking (BMC) and Incremental Model Checking (IC3). The implementation of these verification algorithms relies on the Z3 solver to efficiently handle the logical constraints involved in the verification process. Based on the verification results, the system outputs either a satisfiable (SAT) result or a counterexample, providing an in-depth analysis of the program's behavior.
Zen<T>
objects are just normal .NET objects, we can pass them and return them from functions. For instance, the following code computes a new symbolic integer from two integer inputs x
and y
:
Zen<int> MultiplyAndAdd(Zen<int> x, Zen<int> y)
{
return 3 * x + y;
}
Zen overloads common C# operators such as &,|,^,<=, <, >, >=, +, -, *, true, false
to work with Zen values and supports implicit conversions to lift C# values (of type T
) to Zen values (of type Zen<T>
). Zen can represent a "function" like the one above to perform various symbolic tasks by creating a ZenFunction
to wrap the MultiplyAndAdd
function:
var function = new ZenFunction<int, int, int>(MultiplyAndAdd);
Zen can execute the function we have built on inputs by calling the Evaluate
method on the ZenFunction
:
var output = function.Evaluate(3, 2); // output = 11
This will interpret the expression tree created by the Zen function at runtime and return back a C# int
value in this case. Of course interpreting a tree is quite slow compared to multiplying a few numbers, so if you need to execute a function many times, Zen can compile the model using the C# System.Reflection.Emit
API. This generates IL instructions that execute efficiently - as if the function had been written using actual int
values. Doing so is easy, just call the Compile
method on the function first:
function.Compile();
output = function.Evaluate(3, 2); // output = 11
Or alternatively:
Func<int, int, int> f = Zen.Compile(MultiplyAndAdd);
var output = f(3, 2); // output = 11
We can see the difference by comparing the performance between the two:
var watch = System.Diagnostics.Stopwatch.StartNew();
for (int i = 0; i < 1000000; i++)
function.Evaluate(3, 2);
Console.WriteLine($"interpreted function time: {watch.ElapsedMilliseconds}ms");
watch.Restart();
function.Compile();
Console.WriteLine($"compilation time: {watch.ElapsedMilliseconds}ms");
watch.Restart();
for (int i = 0; i < 1000000; i++)
function.Evaluate(3, 2);
Console.WriteLine($"compiled function time: {watch.ElapsedMilliseconds}ms");
interpreted function time: 4601ms
compilation time: 4ms
compiled function time: 2ms
Zen can find function inputs that lead to some (un)desirable outcome. For example, we can find an (x, y)
input pair such that x
is less than zero and the output of the function is 11
:
var input = function.Find((x, y, result) => Zen.And(x <= 0, result == 11));
// input.Value = (-1883171776, 1354548043)
The type of the result in this case is Option<(int, int)>
, which will have a pair of integer inputs that make the output 11 if such a pair exists. In this case the library will find x = -1883171776
and y = 1354548043
To find multiple inputs, Zen supports an equivalent FindAll
method, which returns an IEnumerable
of inputs where each input in inputs
will be unique so there are no duplicates.
using System.Linq;
...
var inputs = function.FindAll((x, y, result) => Zen.And(x <= 0, result == 11)).Take(5);
While the Find
function provides a way to find a single input to a function, Zen also provides an additional API for reasoning about sets of inputs and outputs to functions. It does this through a StateSetTransformer
API. A transformer is created by calling the Transformer()
method on a ZenFunction
(or by calling Zen.Transformer(...)
):
var f = new ZenFunction<uint, uint>(i => i + 1);
StateSetTransformer<uint, uint> t = f.Transformer();
Transformers allow for manipulating (potentially huge) sets of objects efficient. For example, we can get the set of all input uint
values where adding one will result in an output y
that is no more than 10 thousand:
StateSet<uint> inputSet = t.InputSet((x, y) => y <= 10000);
This set will include all the values 0 - 9999
as well as uint.MaxValue
due to wrapping. Transformers can also manpulate sets by propagating them forward or backwards:
StateSet<uint> outputSet = t.TransformForward(inputSet);
Finally, StateSet
objects can also be intersected, unioned, and negated. We can pull an example element out of a set as follows (if one exists):
Option<uint> example = inputSet.Element(); // example.Value = 0
Internally, transformers leverage binary decision diagrams to represent, possibly very large, sets of objects efficiently.
Zen can automatically generate test inputs for a given model by finding inputs that will lead to different execution paths. For instance, consider an insertion sort implementation. We can ask Zen to generate test inputs for the function that can then be used, for instance to test other sorting algorithms:
var f = new ZenFunction<Pair<int, int>, int>(pair => Zen.If<int>(pair.Item1() < pair.Item2(), 1, 2));
foreach (var input in f.GenerateInputs())
{
Console.WriteLine($"input: {input}");
}
In this case, we get the following output:
input: (0, 0)
input: (0, 1)
The test generation approach uses symbolic execution to enumerate program paths and solve constraints on inputs that lead down each path. Each Zen.If
expression is treated as a program branch point (note: you can set the setting Settings.PreserveBranches = true
to prevent Zen from simplifying formulas involving If
by default if you want to preserve the expression structure.).
Zen supports optimization of objective functions subject to constraints. The API is similar to that for Solve
, but requires a maximization or minimization objective. The solver will find the maximal satisfying assignment to the variables.
var a = Zen.Symbolic<Real>();
var b = Zen.Symbolic<Real>();
var constraints = Zen.And(a <= (Real)10, b <= (Real)10, a + (Real)4 <= b);
var solution = Zen.Maximize(objective: a + b, subjectTo: constraints); // a = 6, b = 10
Zen currently supports a subset of .NET types and also introduces some of its own data types summarized below.
.NET Type | Description | Supported by Z3 backend | Supported by BDD backend | Supported by StateSetTransformers |
---|---|---|---|---|
bool |
{true, false} | ✔️ | ✔️ | ✔️ |
byte |
8-bit value | ✔️ | ✔️ | ✔️ |
char |
16-bit UTF-16 character | ✔️ | ✔️ | ✔️ |
short |
16-bit signed value | ✔️ | ✔️ | ✔️ |
ushort |
16-bit unsigned value | ✔️ | ✔️ | ✔️ |
int |
32-bit signed value | ✔️ | ✔️ | ✔️ |
uint |
32-bit unsigned value | ✔️ | ✔️ | ✔️ |
long |
64-bit signed value | ✔️ | ✔️ | ✔️ |
ulong |
64-bit unsigned value | ✔️ | ✔️ | ✔️ |
Int<_N> |
N-bit signed value | ✔️ | ✔️ | ✔️ |
UInt<_N> |
N-bit unsigned value | ✔️ | ✔️ | ✔️ |
Option<T> |
an optional/nullable value of type T |
✔️ | ✔️ | ✔️ |
Pair<T1, ...> |
pairs of different values | ✔️ | ✔️ | ✔️ |
class , struct |
classes and structs with public fields and/or properties | ✔️ | ✔️ | ✔️ |
FSeq<T> |
finite length sequence of elements of type T |
✔️ | ➖ | ➖ |
FSet<T> |
finite size set of elements of type T |
✔️ | ➖ | ➖ |
FString |
finite length string | ✔️ | ➖ | ➖ |
BigInteger |
arbitrary length integer | ✔️ | ➖ | ➖ |
Real |
arbitrary precision rational number | ✔️ | ➖ | ➖ |
Map<T1, T2> |
arbitrary size maps of keys and values of type T1 and T2 . Note that T1 and T2 can not use finite sequences |
✔️ | ➖ | ➖ |
Set<T> |
arbitrary size sets of values of type T . Same restrictions as with Map<T1, T2> |
✔️ | ➖ | ➖ |
CMap<T1, T2> |
maps of constant keys of type T1 to values of type T2 . |
✔️ | ➖ | ➖ |
CSet<T> |
sets of constants of type T . |
✔️ | ➖ | ➖ |
Array<T, _N> |
Fixed size arrays of values of type T . |
✔️ | ➖ | ➖ |
Seq<T> |
arbitrary size sequences of values of type T . Same restrictions as with Set<T> . Note that SMT solvers use heuristics to solve for sequences and are incomplete. |
✔️ | ➖ | ➖ |
string |
arbitrary size strings. Implemented as Seq<char> |
✔️ | ➖ | ➖ |
Zen supports the primitive types bool, byte, char, short, ushort, int, uint, long, ulong
. All primitive types support (in)equality and integer types support integer arithmetic operations. As an example:
var x = Symbolic<int>();
var y = Symbolic<int>();
var c1 = (~x & y) == 1;
var c2 = And(x + y > 0, x + y < 100);
var solution = And(c1, c2).Solve(); // x = -20, y = 105
Aside from primitive types, Zen also supports the BigInteger
type found in System.Numerics
for reasoning about ubounded integers as well as other types of integers with fixed, but non-standard bit width (for instance a 7-bit integer). Out of the box, Zen provides the types Int<_N>
and UInt<_N>
for N
=1, 2, 3, ..., 99, 100, 128, 256, 512 ,1024. You can also create a custom integer size by simply declaring a new struct:
public struct _101 { }
Zen offers Pair<T1, T2, ...>
, types as a lightweight alternative to classes. By default all values are assumed to be non-null by Zen. For nullable values, it provides an Option<T>
type.
var b = Symbolic<Option<byte>>();
var p = Symbolic<Pair<int, int>>>();
var solution = And(b.IsNone(), p.Item1() == 3).Solve(); // b = None, p = (3, 0)
Zen supports arbitrary precision rational numbers through the Real
type.
var c = new Real(3, 2); // the fraction 3/2 or equivalently 1.5
var x = Symbolic<Real>();
var y = Symbolic<Real>();
var solution = (2 * x + 3 * y == c).Solve(); // x = 1/2, y = 1/6
Zen supports several high-level data types that are finite (bounded) in size (the default size is 5 but can be changed). These include:
FSeq<T>
for reasoning about variable length sequences of values where the order is important.FSet<T>
represents finite sets.
One can implement complex functionality over FSeq<T>
types by combining the elements of the sequence. For instance, we can sum the elements of a sequence:
public Zen<int> Sum<T>(Zen<FSeq<int>> seq)
{
return seq.Fold(Zen.Constant(0), (x, y) => x + y);
}
Zen supports Set<T>
and Map<T1, T2>
data types that do not restrict the size of the set/map. This type only works with the Z3 backend and requires that T
, T1
and T2
not contain any finitized types (FSeq
, FString
, or FSet
). Primitive types (bool, integers, string, BigInteger), classes/structs are allowed.
var s = Symbolic<string>();
var s1 = Symbolic<Set<string>>();
var s2 = Symbolic<Set<string>>();
var s3 = Symbolic<Set<string>>();
var s4 = Symbolic<Set<string>>();
var c1 = s1.Contains("a");
var c2 = s1.Intersect(s2).Contains("b");
var c3 = Implies(s == "c", s3.Add(s) == s2);
var c4 = s4 == s1.Union(s2);
var solution = And(c1, c2, c3, c4).Solve(); // s = "a", s1 = {b, a}, s2 = {b}, s3 = {}, s4 = {b, a}
Arbitrary sets and maps described above are compiled to the SMT solver theory of Arrays. While this theory is quite general, it has known performance limitations. As a lightweight alternative, Zen provides the CMap<T1, T2>
and CSet<T>
classes that offer similar APIs but with the restriction that any map keys or set elements must be C# constant values and not Zen expressions. Zen will compile these sets and maps by creating fresh variables for all possible constants used by the user for these types.
Constant maps are useful for managing a finite number of unknown variables that should be indexed to some data (e.g., a symbolic boolean variable for every edge in a C# graph), and may have better performance in many cases.
CMap<T1, T2>
represents a total map from keys of type T1
to values of type T2
. When a key is not explicitly added to the map, the resulting value will be the Zen default value for the type T2
(e.g., 0
for integers, false
for booleans). CSet<T>
is simply implemented as a CMap<T, bool>
that says for each key, if the element is in the set. Any example use is shown below:
var x = Symbolic<int>();
var m1 = Symbolic<CMap<string, int>>();
var m2 = Symbolic<CMap<string, int>>();
var c1 = m1.Get("a") == Zen.If(x < 10, x + 1, x + 2);
var c2 = m2 == m1.Set("b", x);
var solution = And(c1, c2).Solve(); // x = 0, m1 = m2 = {"a" => 1, _ => 0}
Constant maps and sets have several limitations:
- Inequality may not always give the expected result, as the constant maps do not have a canonical representation.
- They can not be used as values in the
Map
,Set
, orSeq
types. This restriction may be relaxed in the future.
Zen can model fixed-length arrays of symbolic values using the Array<T, TSize>
class. As an example:
var a = Zen.Symbolic<Array<int, _10>>(); // create a symbolic array of size 10
Zen<int>[] elements = a.ToArray(); // get the symbolic elements of the array
var solution = Zen.And(
elements.Aggregate(Zen.Plus) == 100,
a.All(x => Zen.And(x >= 1, x <= 20))).Solve(); // a = [8,6,13,16,14,15,5,13,5,5]
The type parameter TSize
specifies the size of the array. The types _1
through _100
are predefined in the library. To add a custom size, you can create a new struct following this naming convention:
struct _150 { }
Zen has a Seq<T>
type to represent arbitrarily large sequences of elements of type T
. As there is no complete decision procedure for sequences in constraint solvers, queries for sequences may not always terminate, and you may need to use a timeout. If this is not acceptable, you can always use FSeq
or FString
instead, which will model a finite sequence up to a given size. Sequences also support matching against regular expressions. As an example:
Regex<int> r = Regex.Star(Regex.Char(1)); // zero or more 1s in a Seq<int>
var s1 = Symbolic<Seq<int>>();
var s2 = Symbolic<Seq<int>>();
var c1 = s1.MatchesRegex(r);
var c2 = s1 != Seq.Empty<int>();
var c3 = Not(s2.MatchesRegex(r));
var c4 = s1.Length() == s2.Length();
var solution = And(c1, c2, c3, c4).Solve(); // s1 = [1], s2 = [0]
Zen supports the string
type for reasoning about unbounded strings (the string
type is implemented as a Seq<char>
). Strings also support matching regular expressions. Zen supports a limited subset of regex constructs currently - it supports anchors like $
and ^
but not any other metacharacters like \w,\s,\d,\D,\b
or backreferences \1
. As an example:
Regex<char> r1 = Regex.Parse("[0-9a-z]+");
Regex<char> r2 = Regex.Parse("(0.)*");
var s = Symbolic<string>();
var c1 = s.MatchesRegex(Regex.Intersect(r1, r2));
var c2 = s.Contains("a0b0c");
var c3 = s.Length() == new BigInteger(10);
var solution = And(c1, c2, c3).Solve(); // s = "020z0a0b0c"
Zen supports custom class
and struct
types with some limitations. It will attempt to model all public fields and properties. For these types to work, either (1) the class/struct must also have a default constructor and all properties must be allowed to be set, or (2) there must be a constructor with matching parameter names and types for all the public fields. For example, the following are examples that are and are not allowed:
// this will work because the fields are public
public class Point
{
public int X;
public int Y;
}
// this will work because the properties are public and can be set.
public class Point
{
public int X { get; set; }
public int Y { get; set; }
}
// this will NOT work because X can not be set.
public class Point
{
public int X { get; }
public int Y { get; set; }
}
// this will work as well since there is a constructor with the same parameter names.
// note that _z will not be modeled by Zen.
public class Point
{
public int X { get; }
public int Y { get; set; }
private int _z;
public Point(int x, int y)
{
this.X = x;
this.Y = y;
}
}
Enums in C# are just structs that wrap some backing type. Zen will model enums like any other struct. For example, Zen will model the following enum as a byte:
public enum Origin : byte
{
Egp,
Igp,
Incomplete,
}
By default, Zen does not constraint an enum value to only be one of the enumerated values - it can be any value allowed by the backing type (any value between 0 and 255 in this example instead of just the 3 listed). If you want to add a constraint to ensure the value is only one of those enumerated by the user, you write a function like the following to test if a value is one of those expected:
public Zen<bool> IsValidOrigin(Zen<Origin> origin)
{
return Zen.Or(Enum.GetValues<Origin>().Select(x => origin == x));
}
Zen provides two attributes to simplify the creation and manipulation of symbolic objects. The first attribute [ZenObject]
can be applied to classes or structs. It uses C# source generators to generate Get and With methods for all public fields and properties.
[ZenObject]
public class Point
{
public int X { get; set; }
public int Y { get; set; }
public static Zen<Point> Add(Zen<Point> p1, Zen<Point> p2)
{
return p1.WithX(p1.GetX() + p2.GetX()).WithY(p1.GetY() + p2.GetY());
}
}
Note that this requires C# 9.0 and .NET 6 or later to work. In addition, you must add the ZenLib.Generators nuget package to enable code generation. The other attribute supported is the ZenSize
attribute, which controls the size of a generated field in an object. For example, to fix the size of a FSeq
to 10:
public class Person
{
[ZenSize(depth: 10)]
public FSeq<string> Contacts { get; set; }
}