forked from NVIDIA/TensorRT-LLM
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbuild.py
571 lines (514 loc) · 22.4 KB
/
build.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
# SPDX-FileCopyrightText: Copyright (c) 2022-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import os
import time
from pathlib import Path
from typing import Union
import onnx
import tensorrt as trt
import torch
import torch.multiprocessing as mp
from onnx import TensorProto, helper
from transformers import AutoModelForCausalLM, FalconConfig
import tensorrt_llm
from tensorrt_llm._utils import str_dtype_to_trt
from tensorrt_llm.builder import Builder
from tensorrt_llm.logger import logger
from tensorrt_llm.mapping import Mapping
from tensorrt_llm.models import fp8_quantize
from tensorrt_llm.network import net_guard
from tensorrt_llm.plugin.plugin import ContextFMHAType
from tensorrt_llm.quantization import QuantMode
from weight import get_scaling_factors # isort:skip
from weight import load_from_hf_falcon # isort:skip
from weight import load_from_hf_checkpoint # isort:skip
MODEL_NAME = 'falcon'
def trt_dtype_to_onnx(dtype):
if dtype == trt.float16:
return TensorProto.DataType.FLOAT16
elif dtype == trt.float32:
return TensorProto.DataType.FLOAT
elif dtype == trt.int32:
return TensorProto.DataType.INT32
else:
raise TypeError("%s is not supported" % dtype)
def to_onnx(network, path):
inputs = []
for i in range(network.num_inputs):
network_input = network.get_input(i)
inputs.append(
helper.make_tensor_value_info(
network_input.name, trt_dtype_to_onnx(network_input.dtype),
list(network_input.shape)))
outputs = []
for i in range(network.num_outputs):
network_output = network.get_output(i)
outputs.append(
helper.make_tensor_value_info(
network_output.name, trt_dtype_to_onnx(network_output.dtype),
list(network_output.shape)))
nodes = []
for i in range(network.num_layers):
layer = network.get_layer(i)
layer_inputs = []
for j in range(layer.num_inputs):
ipt = layer.get_input(j)
if ipt is not None:
layer_inputs.append(layer.get_input(j).name)
layer_outputs = [
layer.get_output(j).name for j in range(layer.num_outputs)
]
nodes.append(
helper.make_node(str(layer.type),
name=layer.name,
inputs=layer_inputs,
outputs=layer_outputs,
domain="com.nvidia"))
onnx_model = helper.make_model(helper.make_graph(nodes,
'attention',
inputs,
outputs,
initializer=None),
producer_name='NVIDIA')
onnx.save(onnx_model, path)
def get_engine_name(model, dtype, tp_size, pp_size, rank):
if pp_size == 1:
return '{}_{}_tp{}_rank{}.engine'.format(model, dtype, tp_size, rank)
return '{}_{}_tp{}_pp{}_rank{}.engine'.format(model, dtype, tp_size,
pp_size, rank)
def serialize_engine(engine, path):
logger.info(f'Serializing engine to {path}...')
tik = time.time()
with open(path, 'wb') as f:
f.write(bytearray(engine))
tok = time.time()
t = time.strftime('%H:%M:%S', time.gmtime(tok - tik))
logger.info(f'Engine serialized. Total time: {t}')
def load_falcon_config(model_dir: Union[str, Path]) -> FalconConfig:
""" Helper utility to laod FalconConfig.
A pretrained checkpoint from modeling_RW.py has a different structure
and is not compatible with `transformers.FalconConfig` and
`transformers.FalconModel`. We need to manually set the config values.
"""
config = FalconConfig.from_pretrained(model_dir)
if config.model_type not in ['RefinedWebModel', 'RefinedWeb']:
return config
if config.model_type == 'RefinedWeb':
# Case 1. Falcon-40B / Falcon-40B-instruct
# https://huggingface.co/tiiuae/falcon-40b/blob/main/config.json
config.num_hidden_layers = config.n_layer
config.num_attention_heads = config.n_head
config.num_kv_heads = config.n_head_kv
config.new_decoder_architecture = True
elif config.model_type == 'RefinedWebModel':
# Case 2. Falcon-7B / Falcon-7B-instruct
# https://huggingface.co/tiiuae/falcon-7b/blob/main/config.json
config.num_hidden_layers = config.n_layer
config.num_attention_heads = config.n_head
config.num_kv_heads = 1 if config.multi_query else config.n_head
config.new_decoder_architecture = False
else:
raise ValueError("Shouldn't reach here.")
config.model_type = 'falcon'
return config
def parse_arguments():
parser = argparse.ArgumentParser()
parser.add_argument('--world_size', type=int, default=1)
parser.add_argument('--tp_size', type=int, default=1)
parser.add_argument('--pp_size', type=int, default=1)
parser.add_argument('--model_dir', type=str, default=None)
parser.add_argument('--dtype',
type=str,
default='float16',
choices=['float32', 'bfloat16', 'float16'])
parser.add_argument(
'--timing_cache',
type=str,
default='model.cache',
help='The path of to read timing cache from, will be ignored if the '
'file does not exist')
parser.add_argument('--log_level', type=str, default='info')
parser.add_argument('--vocab_size', type=int, default=65024)
parser.add_argument('--n_layer', type=int, default=36)
parser.add_argument('--n_positions', type=int, default=2048)
parser.add_argument('--n_embd', type=int, default=4096)
parser.add_argument('--n_head', type=int, default=64)
parser.add_argument('--n_kv_head', type=int, default=None)
parser.add_argument('--mlp_hidden_size', type=int, default=None)
parser.add_argument('--max_batch_size', type=int, default=8)
parser.add_argument('--max_input_len', type=int, default=1024)
parser.add_argument('--max_output_len', type=int, default=1024)
parser.add_argument('--max_beam_width', type=int, default=1)
parser.add_argument('--use_gpt_attention_plugin',
nargs='?',
const='float16',
type=str,
default=False,
choices=['float16', 'bfloat16', 'float32'])
parser.add_argument('--bias', action='store_true')
parser.add_argument('--parallel_attention',
action='store_true',
help='Use Falcon parallel attention.')
parser.add_argument('--new_decoder_architecture',
action='store_true',
help='Use the new Falcon decoder architecture. '
'If enabled, --parallel_attention will be ignored.')
parser.add_argument(
'--alibi',
action='store_true',
help='Use ALiBi positional encoding. If disabled, RoPE will be used.')
parser.add_argument('--logits_dtype',
type=str,
default='float32',
choices=['float16', 'float32'])
parser.add_argument('--use_gemm_plugin',
nargs='?',
const='float16',
type=str,
default=False,
choices=['float16', 'bfloat16', 'float32'])
parser.add_argument(
'--use_layernorm_plugin',
nargs='?',
const=None,
type=str,
default=False,
choices=['float16', 'float32', 'bfloat16'],
help="Activates layernorm plugin. You can specify the plugin dtype or "
"leave blank to use the model dtype.")
parser.add_argument('--parallel_build', default=False, action='store_true')
parser.add_argument('--enable_context_fmha',
default=False,
action='store_true')
parser.add_argument('--enable_context_fmha_fp32_acc',
default=False,
action='store_true')
parser.add_argument('--visualize', default=False, action='store_true')
parser.add_argument('--load_by_shard',
action='store_true',
help='Load a pretrained model shard-by-shard.')
parser.add_argument('--enable_debug_output',
default=False,
action='store_true')
parser.add_argument('--gpus_per_node', type=int, default=8)
parser.add_argument('--builder_opt', type=int, default=None)
parser.add_argument(
'--output_dir',
type=str,
default='falcon_outputs',
help='The path to save the serialized engine files, timing cache '
'file and model configs')
parser.add_argument('--remove_input_padding',
default=False,
action='store_true')
parser.add_argument(
'--strongly_typed',
default=False,
action="store_true",
help=
'This option is introduced with trt 9.1.0.1+ and will reduce the building time significantly for fp8.'
)
# Arguments related to the quantization of the model.
parser.add_argument(
'--enable_fp8',
default=False,
action='store_true',
help='Use FP8 Linear layer for Attention QKV/Dense and MLP.')
parser.add_argument(
'--quantized_fp8_model_path',
type=str,
default=None,
help='Path of a quantized model checkpoint in .npz format')
parser.add_argument(
'--fp8_kv_cache',
default=False,
action="store_true",
help='By default, we use dtype for KV cache. fp8_kv_cache chooses int8 '
'quantization for KV')
parser.add_argument(
'--use_inflight_batching',
action="store_true",
default=False,
help="Activates inflight batching mode of gptAttentionPlugin.")
parser.add_argument(
'--paged_kv_cache',
action="store_true",
default=False,
help=
'By default we use contiguous KV cache. By setting this flag you enable paged KV cache'
)
parser.add_argument('--tokens_per_block',
type=int,
default=64,
help='Number of tokens per block in paged KV cache')
parser.add_argument(
'--max_num_tokens',
type=int,
default=None,
help='Define the max number of tokens supported by the engine')
parser.add_argument(
'--use_custom_all_reduce',
action='store_true',
help=
'Activates latency-optimized algorithm for all-reduce instead of NCCL.')
args = parser.parse_args()
logger.set_level(args.log_level)
if not args.remove_input_padding:
if args.use_gpt_attention_plugin:
logger.warning(
f"It is recommended to specify --remove_input_padding when using GPT attention plugin"
)
if args.use_inflight_batching:
if not args.use_gpt_attention_plugin:
args.use_gpt_attention_plugin = 'float16'
logger.info(
f"Using GPT attention plugin for inflight batching mode. "
f"Setting to default '{args.use_gpt_attention_plugin}'")
if not args.remove_input_padding:
args.remove_input_padding = True
logger.info(
'Using remove input padding for inflight batching mode.')
if not args.paged_kv_cache:
args.paged_kv_cache = True
logger.info('Using paged KV cache for inflight batching mode.')
if args.max_num_tokens is not None:
assert args.enable_context_fmha
args.quant_mode = QuantMode(0)
if args.fp8_kv_cache:
args.quant_mode = args.quant_mode.set_fp8_kv_cache()
if args.enable_fp8:
args.quant_mode = args.quant_mode.set_fp8_qdq()
if args.model_dir is not None:
hf_config = load_falcon_config(args.model_dir)
args.n_embd = hf_config.hidden_size
args.n_head = hf_config.num_attention_heads
args.n_kv_head = hf_config.num_kv_heads
args.n_layer = hf_config.num_hidden_layers
args.vocab_size = hf_config.vocab_size
args.alibi = hf_config.alibi
args.bias = hf_config.bias
# Falcon variants.
args.parallel_attention = hf_config.parallel_attn
args.new_decoder_architecture = hf_config.new_decoder_architecture
# FalconConfig sets num_kv_heads by num_heads if not provided, even
# though multi-query attention case. We here manually correct the
# value of number of K/V heads.
if not hf_config.new_decoder_architecture and hf_config.multi_query:
args.n_kv_head = 1
else:
args.n_kv_head = args.n_kv_head or args.n_head
assert (args.n_head % args.n_kv_head) == 0, \
"MQA/GQA requires the number of heads to be divisible by the number "\
"of K/V heads."
assert args.n_kv_head % args.tp_size == 0 \
or args.tp_size % args.n_kv_head == 0, \
"MQA/GQA requires either the number of K/V heads to be divisible by "\
"the tensor parallelism size OR the tensor parallelism size to be "\
"divisible by the number of K/V heads."
assert args.pp_size * args.tp_size == args.world_size
if not args.use_gpt_attention_plugin and not args.alibi:
args.use_gpt_attention_plugin = args.dtype
logger.warning(
f"RoPE does not support without GPT attention plugin. Set by "
f"use_gpt_attention_plugin={args.dtype}.")
logger.info(' Build Arguments '.center(100, '='))
for k, v in vars(args).items():
logger.info(f' - {k.ljust(30, ".")}: {v}')
logger.info('=' * 100)
return args
def build_rank_engine(builder: Builder,
builder_config: tensorrt_llm.builder.BuilderConfig,
engine_name: str, rank: int,
args: argparse.Namespace) -> trt.IHostMemory:
'''
@brief: Build the engine on the given rank.
@param rank: The rank to build the engine.
@param args: The cmd line arguments.
@return: The built engine.
'''
dtype = str_dtype_to_trt(args.dtype)
# Initialize Module
mapping = Mapping(
world_size=args.world_size,
rank=rank,
tp_size=args.tp_size,
pp_size=args.pp_size,
)
assert args.n_layer % args.pp_size == 0, \
f"num_layers {args.n_layer} must be a multiple of pipeline "\
f"parallelism size {args.pp_size}"
tensorrt_llm_falcon = tensorrt_llm.models.FalconForCausalLM(
num_layers=args.n_layer,
num_heads=args.n_head,
num_kv_heads=args.n_kv_head,
hidden_size=args.n_embd,
vocab_size=args.vocab_size,
max_position_embeddings=args.n_positions,
dtype=dtype,
quant_mode=args.quant_mode,
bias=args.bias,
use_alibi=args.alibi,
logits_dtype=args.logits_dtype,
mapping=mapping,
parallel_attention=args.parallel_attention,
new_decoder_architecture=args.new_decoder_architecture)
if args.enable_fp8 or args.fp8_kv_cache:
logger.info(f'Loading scaling factors from '
f'{args.quantized_fp8_model_path}')
quant_scales = get_scaling_factors(args.quantized_fp8_model_path,
num_layers=args.n_layer,
quant_mode=args.quant_mode)
tensorrt_llm_falcon = fp8_quantize(tensorrt_llm_falcon,
quant_mode=args.quant_mode,
quant_scales=quant_scales)
if args.model_dir is not None:
logger.info(f'Loading HF Falcon ... from {args.model_dir}')
tik = time.time()
if not args.load_by_shard:
hf_falcon = AutoModelForCausalLM.from_pretrained(
args.model_dir, trust_remote_code=True)
load_from_hf_falcon(tensorrt_llm_falcon,
hf_falcon,
mapping,
dtype=args.dtype)
del hf_falcon
else:
load_from_hf_checkpoint(tensorrt_llm_falcon,
args.model_dir,
mapping,
dtype=args.dtype)
tok = time.time()
t = time.strftime('%H:%M:%S', time.gmtime(tok - tik))
logger.info(f'HF Falcon loaded. Total time: {t}')
# Module -> Network
network = builder.create_network()
network.trt_network.name = engine_name
if args.use_gpt_attention_plugin:
network.plugin_config.set_gpt_attention_plugin(
dtype=args.use_gpt_attention_plugin)
if args.use_gemm_plugin:
network.plugin_config.set_gemm_plugin(dtype=args.use_gemm_plugin)
if args.use_layernorm_plugin:
network.plugin_config.set_layernorm_plugin(
dtype=args.use_layernorm_plugin)
# Quantization plugins.
assert not (args.enable_context_fmha and args.enable_context_fmha_fp32_acc)
if args.enable_context_fmha:
network.plugin_config.set_context_fmha(ContextFMHAType.enabled)
if args.enable_context_fmha_fp32_acc:
network.plugin_config.set_context_fmha(
ContextFMHAType.enabled_with_fp32_acc)
if args.world_size > 1:
network.plugin_config.set_nccl_plugin(args.dtype,
args.use_custom_all_reduce)
if args.remove_input_padding:
network.plugin_config.enable_remove_input_padding()
if args.paged_kv_cache:
network.plugin_config.enable_paged_kv_cache(args.tokens_per_block)
with net_guard(network):
# Prepare
network.set_named_parameters(tensorrt_llm_falcon.named_parameters())
inputs = tensorrt_llm_falcon.prepare_inputs(
max_batch_size=args.max_batch_size,
max_input_len=args.max_input_len,
max_new_tokens=args.max_output_len,
use_cache=True,
max_beam_width=args.max_beam_width,
max_num_tokens=args.max_num_tokens)
tensorrt_llm_falcon(*inputs)
if args.enable_debug_output:
# mark intermediate nodes' outputs
for k, v in tensorrt_llm_falcon.named_network_outputs():
v = v.trt_tensor
v.name = k
network.trt_network.mark_output(v)
v.dtype = dtype
if args.visualize:
model_path = os.path.join(args.output_dir, 'test.onnx')
to_onnx(network.trt_network, model_path)
tensorrt_llm.graph_rewriting.optimize(network)
engine = None
# Network -> Engine
engine = builder.build_engine(network, builder_config)
if rank == 0:
config_path = os.path.join(args.output_dir, 'config.json')
builder.save_config(builder_config, config_path)
return engine
def build(rank, args):
torch.cuda.set_device(rank % args.gpus_per_node)
if not os.path.exists(args.output_dir):
os.makedirs(args.output_dir)
# when doing serializing build, all ranks share one engine
builder = Builder()
cache = None
for cur_rank in range(args.world_size):
# skip other ranks if parallel_build is enabled
if args.parallel_build and cur_rank != rank:
continue
builder_config = builder.create_builder_config(
name=MODEL_NAME,
precision=args.dtype,
timing_cache=args.timing_cache if cache is None else cache,
tensor_parallel=args.tp_size,
pipeline_parallel=args.pp_size,
num_layers=args.n_layer,
num_heads=args.n_head,
num_kv_heads=args.n_kv_head,
hidden_size=args.n_embd,
vocab_size=args.vocab_size,
alibi=args.alibi,
parallel_build=args.parallel_build,
new_decoder_architecture=args.new_decoder_architecture,
max_position_embeddings=args.n_positions,
max_batch_size=args.max_batch_size,
max_input_len=args.max_input_len,
max_output_len=args.max_output_len,
max_num_tokens=args.max_num_tokens,
fp8=args.quant_mode.has_fp8_qdq(),
quant_mode=args.quant_mode,
strongly_typed=args.strongly_typed,
opt_level=args.builder_opt)
engine_name = get_engine_name(MODEL_NAME, args.dtype, args.tp_size,
args.pp_size, cur_rank)
engine = build_rank_engine(builder, builder_config, engine_name,
cur_rank, args)
assert engine is not None, \
f'Failed to build engine for rank {cur_rank}'
if cur_rank == 0:
# Use in-memory timing cache for multiple builder passes.
if not args.parallel_build:
cache = builder_config.trt_builder_config.get_timing_cache()
serialize_engine(engine, os.path.join(args.output_dir, engine_name))
if rank == 0:
ok = builder.save_timing_cache(
builder_config, os.path.join(args.output_dir, "model.cache"))
assert ok, "Failed to save timing cache."
if __name__ == '__main__':
args = parse_arguments()
tik = time.time()
if args.parallel_build and args.world_size > 1 and \
torch.cuda.device_count() >= args.world_size:
logger.warning(
f'Parallelly build TensorRT engines. Please make sure that all '
f'of the {args.world_size} GPUs are totally free.')
mp.spawn(build, nprocs=args.world_size, args=(args, ))
else:
args.parallel_build = False
logger.info('Serially build TensorRT engines.')
build(0, args)
tok = time.time()
t = time.strftime('%H:%M:%S', time.gmtime(tok - tik))
logger.info(f'Total time of building all {args.world_size} engines: {t}')