-
Notifications
You must be signed in to change notification settings - Fork 1
/
modelnet.py
58 lines (45 loc) · 1.81 KB
/
modelnet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
import numpy as np
from torch.utils.data import Dataset
class ModelNet(object):
def __init__(self, path, num_points):
import h5py
self.f = h5py.File(path)
self.num_points = num_points
self.n_train = self.f["train/data"].shape[0]
self.n_valid = int(self.n_train / 5)
self.n_train -= self.n_valid
self.n_test = self.f["test/data"].shape[0]
def train(self):
return ModelNetDataset(self, "train")
def valid(self):
return ModelNetDataset(self, "valid")
def test(self):
return ModelNetDataset(self, "test")
class ModelNetDataset(Dataset):
def __init__(self, modelnet, mode):
super(ModelNetDataset, self).__init__()
self.num_points = modelnet.num_points
self.mode = mode
if mode == "train":
self.data = modelnet.f["train/data"][: modelnet.n_train]
self.label = modelnet.f["train/label"][: modelnet.n_train]
elif mode == "valid":
self.data = modelnet.f["train/data"][modelnet.n_train :]
self.label = modelnet.f["train/label"][modelnet.n_train :]
elif mode == "test":
self.data = modelnet.f["test/data"].value
self.label = modelnet.f["test/label"].value
def translate(self, x, scale=(2 / 3, 3 / 2), shift=(-0.2, 0.2)):
xyz1 = np.random.uniform(low=scale[0], high=scale[1], size=[3])
xyz2 = np.random.uniform(low=shift[0], high=shift[1], size=[3])
x = np.add(np.multiply(x, xyz1), xyz2).astype("float32")
return x
def __len__(self):
return self.data.shape[0]
def __getitem__(self, i):
x = self.data[i][: self.num_points]
y = self.label[i]
if self.mode == "train":
x = self.translate(x)
np.random.shuffle(x)
return x, y