forked from PeterH0323/Smart_Construction
-
Notifications
You must be signed in to change notification settings - Fork 0
/
detect_visual.py
264 lines (224 loc) · 10.7 KB
/
detect_visual.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
# -*- coding: utf-8 -*-
# @Time : 2021/3/6 19:02
# @Author : PeterH
# @Email : [email protected]
# @File : detect_visual.py
# @Software: PyCharm
# @Brief :
from copy import deepcopy
from PyQt5.QtGui import QImage, QPixmap
import torch.backends.cudnn as cudnn
from models.experimental import *
from utils.datasets import *
from utils.utils import *
class YOLOPredict(object):
def __init__(self, weights, out_file_path):
"""
YOLO 模型初始化
:param weights: 权重路径
:param out_file_path: 推理结果存放路径
"""
'''模型参数'''
self.agnostic_nms = False
self.augment = False
self.classes = None
self.conf_thres = 0.4
self.device = ''
self.img_size = 640
self.iou_thres = 0.5
self.output = out_file_path
self.save_txt = False
self.update = False
self.view_img = False
self.weights = weights # 权重文件路径,修改这里
# 加载模型
self.model, self.half, self.names, self.colors, self.device = self.load_model()
self.predict_info = ""
def load_model(self):
"""
加载模型
:return: 模型
"""
imgsz = self.img_size
weights = self.weights
device = self.device
# Initialize
device = torch_utils.select_device(device)
half = device.type != 'cpu' # half precision only supported on CUDA
# Load model
model = attempt_load(weights, map_location=device) # load FP32 model
imgsz = check_img_size(imgsz, s=model.stride.max()) # check img_size
if half:
model.half() # to FP16
# Get names and colors
names = model.module.names if hasattr(model, 'module') else model.names
colors = [[random.randint(0, 255) for _ in range(3)] for _ in range(len(names))]
# Run inference
img = torch.zeros((1, 3, imgsz, imgsz), device=device) # init img
_ = model(img.half() if half else img) if device.type != 'cpu' else None # run once
return model, half, names, colors, device
@staticmethod
def show_real_time_image(image_label, img):
"""
image_label 显示实时推理图片
:param image_label: 本次需要显示的 label 句柄
:param img: cv2 图片
:return:
"""
image_label_width = image_label.width()
resize_factor = image_label_width / img.shape[1]
img = cv2.resize(img, (int(img.shape[1] * resize_factor), int(img.shape[0] * resize_factor)),
interpolation=cv2.INTER_CUBIC)
img_rgb = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) # opencv读取的bgr格式图片转换成rgb格式
image = QImage(img_rgb[:],
img_rgb.shape[1],
img_rgb.shape[0],
img_rgb.shape[1] * 3,
QImage.Format_RGB888)
img_show = QPixmap(image)
image_label.setPixmap(img_show)
def detect(self, source, save_img=False, qt_input=None, qt_output=None):
"""
进行推理操作
:param source: 推理素材
:param save_img: 保存图片 flag
:param qt_input: QT 输入窗口
:param qt_output: QT 输出窗口
:return:
"""
out = self.output
view_img = self.view_img
save_txt = self.save_txt
imgsz = self.img_size
augment = self.augment
conf_thres = self.conf_thres
iou_thres = self.iou_thres
cclasses = self.classes
agnostic_nms = self.agnostic_nms
update = self.update
# if os.path.exists(out):
# shutil.rmtree(out) # delete output folder
os.makedirs(out, exist_ok=True) # make new output folder
show_count = 0
t0 = time.time()
# Set Data loader
vid_path, vid_writer = None, None
webcam = source == '0' or source.startswith('rtsp') or source.startswith('http') or source.endswith('.txt')
if webcam:
view_img = True
cudnn.benchmark = True # set True to speed up constant image size inference
dataset = LoadStreams(source, img_size=imgsz)
else:
save_img = True
dataset = LoadImages(source, img_size=imgsz, visualize_flag=True)
for path, img, im0s, vid_cap, info_str in dataset:
# im0s 为当前推理的图片
origin_image = deepcopy(im0s)
img = torch.from_numpy(img).to(self.device)
img = img.half() if self.half else img.float() # uint8 to fp16/32
img /= 255.0 # 0 - 255 to 0.0 - 1.0
if img.ndimension() == 3:
img = img.unsqueeze(0)
# Inference
t1 = torch_utils.time_synchronized()
pred = self.model(img, augment)[0]
# Apply NMS
pred = non_max_suppression(pred, conf_thres, iou_thres, classes=cclasses, agnostic=agnostic_nms)
t2 = torch_utils.time_synchronized()
# Process detections
for i, det in enumerate(pred): # detections per image
if webcam: # batch_size >= 1
p, s, im0 = path[i], '%g: ' % i, im0s[i].copy()
else:
p, s, im0 = path, '', im0s
save_path = str(Path(out) / Path(p).name)
txt_path = str(Path(out) / Path(p).stem) + ('_%g' % dataset.frame if dataset.mode == 'video' else '')
s += '%gx%g ' % img.shape[2:] # print string
gn = torch.tensor(im0.shape)[[1, 0, 1, 0]] # normalization gain whwh
if det is not None and len(det):
# Rescale boxes from img_size to im0 size
det[:, :4] = scale_coords(img.shape[2:], det[:, :4], im0.shape).round()
# Print results
for c in det[:, -1].unique():
n = (det[:, -1] == c).sum() # detections per class
s += '%g %ss, ' % (n, self.names[int(c)]) # add to string
# Write results
for *xyxy, conf, cls in det:
if save_txt: # Write to file
xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn).view(-1).tolist() # normalized xywh
with open(txt_path + '.txt', 'a') as f:
f.write(('%g ' * 5 + '\n') % (cls, *xywh)) # label format
if save_img or view_img: # Add bbox to image
label = '%s %.2f' % (self.names[int(cls)], conf)
plot_one_box(xyxy, im0, label=label, color=self.colors[int(cls)], line_thickness=3)
# Print time (inference + NMS)
print('%sDone. (%.3fs)' % (s, t2 - t1)) # 打印每张图片的推理信息
# 保存推理信息
self.predict_info = info_str + '%sDone. (%.3fs)' % (s, t2 - t1)
# QT 显示
if qt_input is not None and qt_output is not None and dataset.mode == 'video':
video_count, vid_total = info_str.split(" ")[2][1:-1].split("/") # 得出当前总帧数
fps = ((t2 - t1) / 1) * 100
fps_threshold = 25 # FPS 阈值
show_flag = True
if fps > fps_threshold: # 如果 FPS > 阀值,则跳帧处理
fps_interval = 15 # 实时显示的帧率
show_unit = math.ceil(fps / fps_interval) # 取出多少帧显示一帧,向上取整
if int(video_count) % show_unit != 0: # 跳帧显示
show_flag = False
else:
show_count += 1
if show_flag:
# 推理前的图片 origin_image, 推理后的图片 im0
self.show_real_time_image(qt_input, origin_image)
self.show_real_time_image(qt_output, im0)
# Stream results
if view_img:
cv2.imshow(p, im0)
if cv2.waitKey(1) == ord('q'): # q to quit
raise StopIteration
# Save results (image with detections)
if save_img:
if dataset.mode == 'images':
cv2.imwrite(save_path, im0)
else:
if vid_path != save_path: # new video
vid_path = save_path
if isinstance(vid_writer, cv2.VideoWriter):
vid_writer.release() # release previous video writer
fourcc = 'mp4v' # output video codec
fps = vid_cap.get(cv2.CAP_PROP_FPS)
w = int(vid_cap.get(cv2.CAP_PROP_FRAME_WIDTH))
h = int(vid_cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
vid_writer = cv2.VideoWriter(save_path, cv2.VideoWriter_fourcc(*fourcc), fps, (w, h))
vid_writer.write(im0)
if save_txt or save_img:
print('Results saved to %s' % str(out))
if platform == 'darwin' and not update: # MacOS
os.system('open ' + save_path)
print('Done. (%.3fs)' % (time.time() - t0))
self.predict_info = 'Done. (%.3fs)' % (time.time() - t0)
return save_path
if __name__ == '__main__':
print("This is not for run, may be you want to run 'detect.py' or 'visual_interface.py', pls check your file name. Thx ! ")
# parameter_agnostic_nms = False
# parameter_augment = False
# parameter_classes = None
# parameter_conf_thres = 0.4
# parameter_device = ''
# parameter_img_size = 640
# parameter_iou_thres = 0.5
# parameter_output = 'inference/output'
# parameter_save_txt = False
# parameter_source = './area_dangerous'
# parameter_update = False
# parameter_view_img = False
# parameter_weights = ['./weights/helmet_head_person_m.pt']
# predict = YOLOPredict(parameter_device, parameter_weights, parameter_img_size)
# # with torch.no_grad():
# predict.detect(parameter_output, parameter_source, parameter_view_img, parameter_save_txt,
# parameter_img_size, parameter_augment, parameter_conf_thres, parameter_iou_thres,
# parameter_classes, parameter_agnostic_nms, parameter_update)
# detect(parameter_output, parameter_source, parameter_weights, parameter_view_img, parameter_save_txt,
# parameter_img_size, parameter_augment, parameter_conf_thres, parameter_iou_thres, parameter_classes,
# parameter_agnostic_nms, parameter_device, parameter_update)