-
Notifications
You must be signed in to change notification settings - Fork 1
/
dora.py
254 lines (210 loc) · 7.49 KB
/
dora.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
# Copyright (c) Facebook, Inc. and its affiliates.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
"""
Dora the Explorer, special thank to @pierrestock.
"""
import argparse
import json
import logging
import shlex
import subprocess as sp
import time
from collections import namedtuple
from functools import partial
from itertools import product # noqa
from pathlib import Path
import treetable as tt # really great package for ascii art tables
from demucs.parser import get_name, get_parser
logger = logging.getLogger(__name__)
parser = get_parser()
logs = Path("logs")
logs.mkdir(exist_ok=True)
Job = namedtuple("Job", "args name sid")
def fname(name, kind):
return logs / f"{name}.{kind}"
def get_sid(name):
sid_file = fname(name, "sid")
try:
return int(open(sid_file).read().strip())
except IOError:
return None
def cancel(sid):
sp.run(["scancel", str(sid)], check=True)
def reset_job(name):
sid_file = fname(name, "sid")
if sid_file.is_file():
sid_file.unlink()
def get_done(name):
done_file = fname(name, "done")
return done_file.exists()
def get_metrics(name):
json_file = fname(name, "json")
try:
return json.load(open(json_file))
except IOError:
return []
def schedule(name, args, nodes=2, partition="learnfair", time=2 * 24 * 60, large=True, gpus=8):
log = fname(name, "log")
command = [
"sbatch",
f"--job-name={name}",
f"--output={log}.%t",
"--mem=500G",
"--cpus-per-task=40",
f"--gres=gpu:{gpus}",
f"--nodes={nodes}",
"--tasks-per-node=1",
f"--partition={partition}",
f"--time={time}",
]
if large:
command += ["--constraint=volta32gb"]
srun_flags = f"--output={shlex.quote(str(log))}.%t"
run_cmd = ["#!/bin/bash"]
run_cmd.append(f"srun {srun_flags} python3 run_slurm.py " + " ".join(args))
result = sp.run(command, stdout=sp.PIPE, input="\n".join(run_cmd).encode('utf-8'),
check=True).stdout.decode('utf-8')
sid = int(result.strip().rsplit(' ', 1)[1])
open(fname(name, "sid"), "w").write(str(sid))
return sid
def _check(sids):
cs_ids = ','.join(map(str, sids))
result = sp.run(['squeue', f'-j{cs_ids}', '-o%A,%T,%P', '--noheader'],
check=True,
capture_output=True)
lines = result.stdout.decode('utf-8').strip().split('\n')
results = {}
for line in lines:
line = line.strip()
if not line:
continue
sid, status, partition = line.split(',', 2)
sid = int(sid)
results[sid] = status.lower()
for sid in sids:
if sid not in results:
results[sid] = 'failed'
return results
class Monitor:
def __init__(self, cancel=False, base=[]):
self.cancel = cancel
self.base = base
self.jobs = []
def schedule(self, args, *vargs, **kwargs):
args = self.base + args
name = get_name(parser, parser.parse_args(args))
sid = get_sid(name)
if sid is None and not self.cancel:
sid = schedule(name, args, *vargs, **kwargs)
self.jobs.append(Job(sid=sid, name=name, args=args))
def gc(self):
names = set(job.name for job in self.jobs)
for f in logs.iterdir():
stem, suffix = f.name.rsplit(".", 1)
if suffix == "sid":
if stem not in names:
sid = get_sid(stem)
if sid is not None:
print(f"GCing {stem} / {sid}")
cancel(sid)
f.unlink()
def check(self, trim=None, reset=False):
to_check = []
statuses = {}
for job in self.jobs:
if get_done(job.name):
statuses[job.sid] = "done"
elif job.sid is not None:
to_check.append(job.sid)
statuses.update(_check(to_check))
if trim is not None:
trim = len(get_metrics(self.jobs[trim].name))
lines = []
for index, job in enumerate(self.jobs):
status = statuses.get(job.sid, "failed")
if status in ["failed", "completing"] and reset:
reset_job(job.name)
status = "reset"
meta = {'name': job.name, 'sid': job.sid, 'status': status[:2], "index": index}
metrics = get_metrics(job.name)
if trim is not None:
metrics = metrics[:trim]
meta["epoch"] = len(metrics)
if metrics:
metrics = metrics[-1]
else:
metrics = {}
lines.append({'meta': meta, 'metrics': metrics})
table = tt.table(shorten=True,
groups=[
tt.group("meta", [
tt.leaf("index", align=">"),
tt.leaf("name"),
tt.leaf("sid", align=">"),
tt.leaf("status"),
tt.leaf("epoch", align=">")
]),
tt.group("metrics", [
tt.leaf("train", ".2%"),
tt.leaf("valid", ".2%"),
tt.leaf("best", ".2%"),
])
])
print(tt.treetable(lines, table, colors=["30", "39"]))
def main():
parser = argparse.ArgumentParser("grid.py")
parser.add_argument("-c", "--cancel", action="store_true", help="Cancel all jobs")
parser.add_argument(
"-r",
"--reset",
action="store_true",
help="Will reset the state of failed jobs. Next invocation will reschedule them")
parser.add_argument("-t", "--trim", type=int, help="Trim metrics to match job with given index")
args = parser.parse_args()
monitor = Monitor(base=[], cancel=args.cancel)
sched = partial(monitor.schedule, nodes=1)
tasnet = ["--tasnet", "--split_valid", "--samples=80000", "--X=10"]
extra_path = Path.home() / "musdb_raw_44_allstems"
extra = [f"--raw={extra_path}"]
# Main models
for seed in [42, 43, 44, 45, 46]:
base = [f"--seed={seed}"]
sched(base)
sched(base + extra)
sched(base + tasnet + ["-e", "180"])
sched(base + tasnet + extra)
# Optimality of parameters
for channels, lr, seed in product([64, 80, 100], [3e-4, 5e-4], [42, 43, 44]):
cmd = [f"--channels={channels}", f"--lr={lr}", f"--seed={seed}"]
sched(cmd)
for rescale in [0.01, 0.05, 0.1]:
sched([f"--rescale={rescale}"])
# Ablation study
sched(["--no_glu"])
sched(["--no_rewrite"])
sched(["--context=1"])
sched(["--rescale=0"])
sched(["--mse"])
sched(["--lstm_layers=0"])
sched(["--no_glu", "--rescale=0"])
if args.cancel:
for job in monitor.jobs:
if job.sid is not None:
print(f"Canceling {job.name}/{job.sid}")
cancel(job.sid)
return
names = [job.name for job in monitor.jobs]
json.dump(names, open(logs / "herd.json", "w"))
# Cancel any running job that was removed from the above sched calls.
monitor.gc()
while True:
if args.reset:
monitor.check(reset=True)
return
monitor.check(trim=args.trim)
time.sleep(5 * 60)
if __name__ == "__main__":
main()