-
Notifications
You must be signed in to change notification settings - Fork 21
/
linear_regression.py
140 lines (116 loc) · 3.57 KB
/
linear_regression.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
import numpy as np
import matplotlib.pyplot as plt
import optimizer
import regularizer
class LinearRegressionGradientDescent:
def __init__(self, debug=True):
self.__debug = debug
def fit(self, X, y, epochs, optimizer, regularizer=regularizer.Regularizer(0)):
'''
Parameters
----------
X : shape (n_samples, n_features)
Training data
y : shape (n_samples,)
Target values
epochs : The number of epochs
optimizer : Optimize algorithm, see also optimizer.py
regularizer : Regularize algorithm, see also regularizer.py
'''
n_samples, n_features = X.shape
self.__W = np.zeros(n_features)
self.__b = 0
if self.__debug:
loss = []
for _ in range(epochs):
h = self.predict(X)
g_W = X.T.dot(h - y) / n_samples + regularizer.regularize(self.__W)
g_b = np.mean(h - y)
g_W, g_b = optimizer.optimize([g_W, g_b])
self.__W -= g_W
self.__b -= g_b
if self.__debug:
h = self.predict(X)
loss.append(np.mean((h - y) ** 2))
if self.__debug:
plt.plot(loss)
plt.show()
def predict(self, X):
'''
Parameters
----------
X : shape (n_samples, n_features)
Predicting data
Returns
-------
y : shape (n_samples,)
Predicted value per sample.
'''
return X.dot(self.__W) + self.__b
class LinearRegressionNewton:
def __init__(self, debug=True):
self.__debug = debug
def fit(self, X, y, epochs):
'''
Parameters
----------
X : shape (n_samples, n_features)
Training data
y : shape (n_samples,)
Target values
epochs : The number of epochs
'''
n_samples, n_features = X.shape
self.__W = np.zeros(n_features)
self.__b = 0
if self.__debug:
loss = []
for _ in range(epochs):
h = self.predict(X)
g_W = X.T.dot(h - y)
H_W = X.T.dot(X)
self.__W -= np.linalg.pinv(H_W).dot(g_W)
self.__b -= np.mean(h - y)
if self.__debug:
h = self.predict(X)
loss.append(np.mean((h - y) ** 2))
if self.__debug:
plt.plot(loss)
plt.show()
def predict(self, X):
'''
Parameters
----------
X : shape (n_samples, n_features)
Predicting data
Returns
-------
y : shape (n_samples,)
Predicted value per sample.
'''
return X.dot(self.__W) + self.__b
class LinearRegressionEquation:
def fit(self, X, y):
'''
Parameters
----------
X : shape (n_samples, n_features)
Training data
y : shape (n_samples,)
Target values
'''
X_with_b = np.insert(X, 0, 1, axis=1)
self.__W = np.linalg.pinv(X_with_b.T.dot(X_with_b)).dot(X_with_b.T).dot(y)
def predict(self, X):
'''
Parameters
----------
X : shape (n_samples, n_features)
Predicting data
Returns
-------
y : shape (n_samples,)
Predicted value per sample.
'''
X_with_b = np.insert(X, 0, 1, axis=1)
return X_with_b.dot(self.__W)