-
Notifications
You must be signed in to change notification settings - Fork 128
/
Copy pathmk-c.scm
965 lines (719 loc) · 21.3 KB
/
mk-c.scm
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
;;; miniKanren from Dan Friedman, William Byrd and Oleg Kiselyov
;;; modified by Yin Wang to support a negation operator
;;; (noto) and a disjoint branching operator (condc). The
;;; limitation is that they cannot be nested.
;;; Lazy streams are used to make the connections more modular.
;;; This file was generated by writeminikanren.pl
;;; Generated at 2007-10-25 15:24:42
(define *debug-tags* '())
(define debug
(lambda (tags format . args)
(let* ((tags (if (not (pair? tags)) (list tags) tags))
(fs (string-append "[" (symbol->string (car tags)) "] " format "\n")))
(cond
[(null? tags)]
[(pair? tags)
(if (member (car tags) *debug-tags*)
(apply printf fs args)
(void))]
))))
(define-syntax lambdag@
(syntax-rules ()
((_ (p ...) e ...) (lambda (p ...) e ...))))
(define-syntax lambdaf@
(syntax-rules ()
((_ () e ...) (lambda () e ...))))
(define-syntax inc
(syntax-rules () ((_ e) (lambdaf@ () e))))
(define defunc
(lambda (f)
(if (procedure? f) (defunc (f)) f)))
;;------------ stream primitives ------------
(define snull 'snull)
(define snull?
(lambda (s)
(eq? s snull)))
(define-syntax scons
(syntax-rules ()
((_ a d) (cons a (lambda () d)))))
(define scar
(lambda (s)
(cond
[(procedure? s) (scar (s))]
[else (car s)])))
(define scdr
(lambda (s)
(cond
[(procedure? s) (scdr (s))]
[else ((cdr s))])))
(define-syntax sunit
(syntax-rules ()
((_ a) (scons a snull))))
(define slift
(lambda (f)
(lambda args
(sunit (apply f args)))))
(define-syntax make-stream
(syntax-rules ()
((_) snull)
((_ e1 e2 ...) (scons e1 (make-stream e2 ...)))))
(define taken
(lambda (n s)
(if (and n (zero? n))
'()
(let ([s (defunc s)])
(cond
[(snull? s) '()]
[else (cons (scar s) (taken (and n (- n 1)) (scdr s)))])))))
(define smerge
(lambda (s1 s2)
(cond
[(snull? s1) s2]
[(procedure? s1)
(lambda () (smerge s2 (s1)))]
[else (scons (scar s1) (smerge s2 (scdr s1)))])))
(define stream-merge
(lambda (ss)
(cond
[(snull? ss) snull]
[(procedure? ss) (lambda () (stream-merge (ss)))]
[(snull? (scar ss)) (stream-merge (scdr ss))]
[(procedure? (scar ss)) (lambda ()
(smerge (stream-merge (scdr ss))
(scar ss)))]
[else (scons (scar (scar ss)) (smerge (scdr (scar ss))
(stream-merge (scdr ss))))])))
(define smap
(lambda (f s)
(cond
[(snull? s) snull]
[(procedure? s) (lambda () (smap f (s)))]
[else (scons (f (scar s)) (smap f (scdr s)))])))
;; Substitution
(define-syntax rhs
(syntax-rules ()
((_ x) (cdr x))))
(define-syntax lhs
(syntax-rules ()
((_ x) (car x))))
(define-syntax size-s
(syntax-rules ()
((_ x) (length x))))
(define-syntax var
(syntax-rules ()
((_ x) (vector x))))
(define-syntax var?
(syntax-rules ()
((_ x) (vector? x))))
(define empty-s '())
(define ext-s
(lambda (x v s)
(cons `(,x . ,v) s)))
(define walk
(lambda (v s)
(cond
((var? v)
(let ((a (assq v s)))
(cond
(a (walk (rhs a) s))
(else v))))
(else v))))
(define unify
(lambda (v w s env)
((Env-unify env) v w s env)))
(define unify-good
(lambda (v w s env)
; (printf "[unify-good]: ~a <--> ~a :: ~a\n" v w s)
(let ((v (walk v s))
(w (walk w s)))
(cond
((eq? v w) s)
((var? v) (ext-s v w s))
((var? w) (ext-s w v s))
((and (pair? v) (pair? w))
(let ((s (unify-good (car v) (car w) s env)))
(and s (unify-good (cdr v) (cdr w) s env))))
((equal? v w) s)
(else #f)))))
(define unify-evil
(lambda (v w s env)
(debug '(unify-evil unify)
"v=~a, w=~a, cvars: ~a\n subst:~a" v w (Env-cvars env) s)
(let ((vv (walk v s))
(ww (walk w s)))
(cond
((eq? vv ww) s)
((and (var? vv) (memq v (Env-cvars env))) #f)
((and (var? ww) (memq w (Env-cvars env))) #f)
((var? vv) (ext-s vv ww s))
((var? ww) (ext-s ww vv s))
((and (pair? vv) (pair? ww))
(let ((s (unify-evil (car vv) (car ww) s env)))
(and s (unify-evil (cdr vv) (cdr ww) s env))))
((equal? vv ww) s)
(else #f)))))
(define switch-unify
(lambda (env)
(if (eq? (Env-unify env) unify-good)
(change-unify env unify-evil)
(change-unify env unify-good))))
(define unify-check
(lambda (u v s)
(let ((u (walk u s))
(v (walk v s)))
(cond
((eq? u v) s)
((var? u) (ext-s-check u v s))
((var? v) (ext-s-check v u s))
((and (pair? u) (pair? v))
(let ((s (unify-check (car u) (car v) s)))
(and s (unify-check (cdr u) (cdr v) s))))
((equal? u v) s)
(else #f)))))
(define ext-s-check
(lambda (x v s)
(cond
((occurs-check x v s) #f)
(else (ext-s x v s)))))
(define occurs-check
(lambda (x v s)
(let ((v (walk v s)))
(cond
((var? v) (eq? v x))
((pair? v)
(or
(occurs-check x (car v) s)
(occurs-check x (cdr v) s)))
(else #f)))))
(define walk*
(lambda (w s)
(let ((v (walk w s)))
(cond
((var? v) v)
((pair? v)
(cons
(walk* (car v) s)
(walk* (cdr v) s)))
(else v)))))
(define reify-s
(lambda (v s)
(debug 'reify-s "v: ~a\ns:~a" v s)
(let ((v (walk v s)))
(cond
((var? v)
(ext-s v (reify-name (size-s s)) s))
((pair? v) (reify-s (cdr v)
(reify-s (car v) s)))
(else s)))))
(define reify-name
(lambda (n)
(string->symbol
(string-append "_" "." (number->string n)))))
(define reify
(lambda (v s)
(let ((v (walk* v s)))
(walk* v (reify-s v empty-s)))))
;-------------------------------------------------------------
; data structures
;-------------------------------------------------------------
(struct Pkg (subst constraints) #:transparent)
;; constraints save the current environment vars
(struct Constraint (goal vars text) #:transparent)
;; environment
(struct Env (unify constraints vars cvars) #:transparent)
(define Env-constraint-goals
(lambda (p)
(map Constraint-goal (Env-constraint p))))
(define ext-pkg-constraints
(lambda (p cs ctexts env)
(let ([newc (map (lambda (g t)
(Constraint g (Env-vars env) t))
cs ctexts)])
(Pkg (Pkg-subst p) (append newc (Pkg-constraints p))))))
;; convenience functions
(define change-unify
(lambda (p u)
(match p
[(Env _ constraints vars cvars)
(Env u constraints vars cvars)])))
(define change-constraints
(lambda (p c)
(match p
[(Env unify _ vars cvars)
(Env unify c vars cvars)])))
(define change-vars
(lambda (p v)
(match p
[(Env unify constraints _ cvars)
(Env unify constraints v cvars)])))
(define change-cvars
(lambda (p cv)
(match p
[(Env unify constraints vars _)
(Env unify constraints vars cv)])))
(define ext-constraint
(lambda (env new-cg)
(let ([newc (map (lambda (g) (Constraint g (Env-vars env) 'a))
new-cg)])
(change-constraints env newc))))
(define ext-vars
(lambda (env new-vars)
(change-vars env (append new-vars (Env-vars env)))))
(define ext-cvars
(lambda (env new-cvars)
(change-cvars env (append new-cvars (Env-cvars env)))))
;-------------------------------------------------------------
; miniKanren
;-------------------------------------------------------------
(define succeed (lambda (s env) (sunit s)))
(define fail (lambda (s env) snull))
(define bind
(lambda (s f env)
(cond
[(procedure? s) (lambda () (bind (s) f env))]
[else
(stream-merge (smap (lambda (s) (f s env)) s))])))
(define bind*
(lambda (s goals env)
(cond
[(null? goals)
(stream-merge
(smap (lambda (s)
(bind-constraints (sunit s) (Pkg-constraints s) env))
s))]
[(snull? s) snull]
[else (bind* (bind s (car goals) env) (cdr goals) env)])))
(define bind*
(lambda (s goals env)
(cond
[(null? goals) s]
[(snull? s) snull]
[else (bind* (bind s (car goals) env) (cdr goals) env)])))
(define bind-constraints
(lambda (s cs env)
(cond
[(null? cs) s]
[(snull? s) snull]
[else
(debug 'bind-constraints
"checking constraint: ~a" (Constraint-text (car cs)))
(bind-constraints
(bind s
(Constraint-goal (car cs))
(Env (Env-unify env)
'() ; no constraints
(Env-vars env)
(Constraint-vars (car cs))))
(cdr cs)
env)])))
(define ==
(lambda (u v)
(lambdag@ (s env)
(let ((s1 ((Env-unify env) u v (Pkg-subst s) env)))
(cond
[(not s1) snull]
[else (sunit (Pkg s1 (Pkg-constraints s)))])))))
(define ==
(lambda (u v)
(lambdag@ (s env)
(let ((s1 ((Env-unify env) u v (Pkg-subst s) env)))
(cond
[(not s1) snull]
[else
(let ([cc (bind-constraints (sunit (Pkg s1 '()))
(Pkg-constraints s) env)])
(if (snull? cc)
snull
(sunit (Pkg s1 (filter (lambda (c)
(not (tautology? c (Pkg-subst s))))
(Pkg-constraints s))))))])))))
(define ando
(lambda goals
(lambdag@ (s env)
(bind* (sunit s) goals env))))
(define org2
(lambda (goals)
(lambdag@ (s env)
(cond
[(null? goals) snull]
[else
(scons (bind (sunit s) (car goals) env)
((org2 (cdr goals)) s env))]))))
(define oro
(lambda goals
(lambdag@ (s env)
(stream-merge ((org2 goals) s env)))))
(define noto
(lambda (g)
(lambdag@ (s env)
(let ([ans (defunc (g s (switch-unify env)))])
(if (snull? ans)
(succeed s env)
(fail s env))))))
(define-syntax exist
(syntax-rules ()
((_ (x ...) g0 g ...)
(lambdag@ (s env)
(inc
(let ((x (var 'x)) ...)
((ando g0 g ...) s (ext-vars env (list x ...)))))))))
(define-syntax forall
(syntax-rules ()
((_ (x ...) g0 g ...)
(lambdag@ (s env)
(inc
(let ((x (var 'x)) ...)
((ando g0 g ...)
(let loop ([ss (Pkg-subst s)] [vars (list x ...)])
(cond
[(null? vars) ss]
[else (loop (ext-s (car vars) (gensym) ss) (cdr vars))]))
(ext-vars env (list x ...)))))))))
(define-syntax conde
(syntax-rules ()
((_ (g0 g ...) (g1 g^ ...) ...)
(lambdag@ (s env)
(inc
((oro (ando g0 g ...)
(ando g1 g^ ...) ...) s env))))))
(define-syntax condc
(syntax-rules ()
((_ (g0 g ...)) (ando g0 g ...))
((_ (g0 g ...) g^ ...)
(lambdag@ (s env)
(inc
((oro (ando g0 g ...)
(assert ((noto g0))
(condc g^ ...))) s env))))))
(define reify-constraint
(lambda (s)
(lambda (c)
(let ((ct (Constraint-text c)))
(cond
[(pair? ct)
(cons (car ct)
(map (lambda (v) (walk* v (Pkg-subst s))) (cdr ct)))]
[else ct])))))
(define format-constraints
(lambda (s)
(debug 'format-constraints "subst: ~a\nconstraints: ~a\n"
(Pkg-subst s)
(Pkg-constraints s))
(map (reify-constraint s)
(filter (lambda (c)
(not (tautology? c (Pkg-subst s))))
(Pkg-constraints s)))))
(define-syntax run
(syntax-rules ()
((_ n (x) g0 g ...)
(let ((x (var 'x)))
(let ([ss ((ando g0 g ...) (Pkg empty-s '())
(Env unify-good '() (list x) '()))])
(taken n (smap (lambda (s)
(let* ((x (walk* x (Pkg-subst s)))
(rs (reify-s x empty-s)))
(list
(walk* x rs)
(let ((ctext (walk* (format-constraints s) rs)))
(if (null? ctext)
'()
(list 'constraints: ctext))))))
ss)))))))
(define tautology?
(lambda (c s)
(debug 'tautology?
"constraint: ~a\nvars: ~a\nsubst:~a\n"
(Constraint-text c)
(Constraint-vars c)
s)
(not (snull?
(defunc ((Constraint-goal c)
(Pkg s '())
(Env unify-evil '() '() (Constraint-vars c))))))))
(define-syntax run*
(syntax-rules ()
((_ (x) g ...) (run #f (x) g ...))))
(define-syntax make-text
(syntax-rules (quote quasiquote)
((_ (quote a)) (quote a))
((_ (quasiquote a)) (quasiquote a))
((_ (g a0 ...)) (list 'g (make-text a0) ...))
((_ a) a)))
(define-syntax make-text*
(syntax-rules (quote quasiquote)
((_) '())
((_ (quote a)) (quote a))
((_ (quasiquote a)) (quasiquote a))
((_ (g0 a ...) g ...)
(list (make-text (g0 a ...)) (make-text g) ...))
((_ a) 'a)))
;; (make-text* `b)
;; (make-text* (noto (== `(,a ,d) (cons u v))) (noto (appendo a b c)))
;; (define a 1)
;; (define b 2)
;; (define c 3)
;; (define d 4)
;; (define u 5)
;; (define v 6)
;; (make-text* (a b c) `(,c a))
;; (define q 10)
; (make-text* (noto (== q 3)))
(define-syntax assert
(syntax-rules ()
((_ (c0 c ...) g ...)
(lambdag@ (s env)
(inc
((ando g ...)
(ext-pkg-constraints s (list c0 c ...) (make-text* c0 c ...) env)
(ext-constraint env (list c0 c ...))))))))
(define-syntax conda
(syntax-rules ()
((_ (g0 g ...) (g1 g^ ...) ...)
(lambdag@ (s)
(inc
(ifa ((g0 s) g ...)
((g1 s) g^ ...) ...))))))
(define-syntax ifa
(syntax-rules ()
((_) snull)
((_ (e g ...) b ...)
(cond
[(snull? (defunc e)) (ifa b ...)]
[else (bind* e (list g ...))]))))
(define-syntax condu
(syntax-rules ()
((_ (g0 g ...) (g1 g^ ...) ...)
(lambdag@ (s)
(inc
(ifu ((g0 s) g ...)
((g1 s) g^ ...) ...))))))
(define-syntax ifu
(syntax-rules ()
((_) snull)
((_ (e g ...) b ...)
(cond
[(snull? (defunc e)) (ifa b ...)]
[else (bind* (sunit (scar e)) (list g ...))]))))
(define-syntax project
(syntax-rules ()
((_ (x ...) g g* ...)
(lambdag@ (s env)
(let ((x (walk* x s)) ...)
((exist () g g* ...) s env))))))
(define prints
(lambda (s env)
(begin
(printf "#[prints]:: ~s\n" s)
(succeed s env))))
(define print-env
(lambdag@ (s env)
(begin
(printf "env: ~s\n" env)
(succeed s env))))
(define print-var
(lambda (name v)
(lambda (s env)
(begin
(printf "#[print-var] ~a = ~s\n" name (walk v s))
(succeed s env)))))
(define-syntax print-var
(syntax-rules ()
((_ v) (lambda (s env)
(begin
(printf "#[print-var] ~a = ~s\n" 'v (walk* v (Pkg-subst s)))
(succeed s env))))))
(define print-constraintso
(lambda (s env)
(printf "#[constraints] \n~a\n"
(map (lambda (s) (format "~a\n" s))
(map (reify-constraint s) (Pkg-constraints s))))
(succeed s env)))
;-------------------------------------------------------------
; basic definitions (from TRS)
;-------------------------------------------------------------
(define caro
(lambda (p a)
(exist (d)
(== (cons a d) p))))
(define cdro
(lambda (p d)
(exist (a)
(== (cons a d) p))))
(define conso
(lambda (a d p)
(== (cons a d) p)))
(define nullo
(lambda (x)
(== '() x)))
(define eqo
(lambda (x y)
(== x y)))
(define pairo
(lambda (p)
(exist (a d)
(conso a d p))))
(define nullo
(lambda (x)
(== '() x)))
;-------------------------------------------------------------
; rembero (TRS frame 30)
;-------------------------------------------------------------
;; using conde operator
(define rembero1
(lambda (x l out)
(conde
((nullo l) (== '() out))
((caro l x) (cdro l out))
((exist (res)
(exist (d)
(cdro l d)
(rembero1 x d res))
(exist (a)
(caro l a)
(conso a res out)))))))
;; example
(run* (out)
(exist (y)
(rembero1 y `(a b ,y d peas e) out)))
;; We got 7 answers, 4 of which shouldn't happen, because
;; the fresh variable y should never fail to remove itself
;; and thus go on to remove d, peas and e.
;; =>
;; (((b a d peas e) ()) ; y == a
;; ((a b d peas e) ()) ; y == b
;; ((a b d peas e) ()) ; y == y
;; ((a b d peas e) ()) ; unreasonable beyond this point
;; ((a b peas d e) ())
;; ((a b e d peas) ())
;; ((a b _.0 d peas e) ()))
;; using condc operator
(define rembero
(lambda (x l out)
(condc
((nullo l) (== '() out))
((caro l x) (cdro l out))
((exist (res)
(exist (d)
(cdro l d)
(rembero x d res))
(exist (a)
(caro l a)
(conso a res out)))))))
;; example
(run* (out)
(exist (y)
(rembero y `(a b ,y d peas e) out)))
;; We got only 3 answers, plus two constraints for the third
;; answer. The constraints are basically saying: If we are
;; to have this answer, neither (caro (b y d peas e) y) nor
;; (caro (a b y d peas e) y) should hold.
;; =>
;; (((b a d peas e) ())
;; ((a b d peas e) ())
;; ((a b d peas e)
;; (constraints:
;; ((noto (caro (b #1(y) d peas e) #1(y)))
;; (noto (caro (a b #1(y) d peas e) #1(y)))))))
;-------------------------------------------------------------
; Oleg's comments (Jul 23)
;-------------------------------------------------------------
(run 5 (out)
(exist (y l r)
(== out (list y l r))
(rembero y l r)))
;; =>
;; '(((_.0 () ()) ())
;; ((_.0 (_.0 . _.1) _.1) ())
;; ((_.0 (_.1) (_.1))
;; (constraints: ((noto (caro (_.1) _.0)))))
;; ((_.0 (_.1 _.0 . _.2) (_.1 . _.2))
;; (constraints: ((noto (caro (_.1 _.0 . _.2) _.0)))))
;; ((_.0 (_.1 _.2) (_.1 _.2))
;; (constraints: ((noto (caro (_.2) _.0))
;; (noto (caro (_.1 _.2) _.0))))))
;; Here, the constraints are really part of the answer: the answer
;; (_.0 (_.1) (_.1)) does not make sense without the constraint that
;; _.0 must be different from _.1. The easy way to see that (_.0 (_.1)
;; (_.1)) is not an answer is to instantiate both variables to 1:
(run 5 (out)
(exist (y l r)
(== out '(1 (1) (1)))
(== out (list y l r))
(rembero y l r)))
;; produces (). Thus constraints must be, in general, part of the
;; answer. Hence what I said about the need to normalize constraints
;; applies. Here is the simple example where constraint normalization
;; may help:
(run* (out)
(exist (x y)
(== out (list x y))
(condc
((caro (list x) y))
((caro (list y) x))
((caro (list y) 1))
((caro (list x) 1)))))
;; =>
;; '(((_.0 _.0) ())
;; ((_.0 1)
;; (constraints:
;; ((noto (caro (list 1) _.0))
;; (noto (caro (list _.0) 1)))))
;; ((1 _.0)
;; (constraints:
;; ((noto (caro (list _.0) 1))
;; (noto (caro (list _.0) 1))
;; (noto (caro (list 1) _.0))))))
;; The three constraints in the last answer are identical, aren't they?
;; Here is why we need a genuine constraint solver.
; num predicate
(define (num x)
(conde
((== x '()))
((exist (y)
(== x (cons 1 y))
(num y)))))
(run 5 (out) (num out))
; greater-than on num
(define (gt x y)
(conde
((== y '()) (pairo x))
((exist (x1 y1)
(== x (cons 1 x1))
(== y (cons 1 y1))
(gt x1 y1)))))
(run* (out) (gt '(1 1 1 1) out))
;; (run 1 (out)
;; (exist (x y)
;; (condc
;; ((gt x y) fail)
;; ((gt x (cons 1 y))
;; (num x) (num y) (== out 'really?)))))
;; => diverges
;; rewritten this way
;; (run 1 (out)
;; (exist (x y)
;; (== out (list x y))
;; (num x) (num y)
;; (condc
;; ((gt x y) fail)
;; ((gt x (cons 1 y))))))
;; The genuine constraint solver for naturals would have determined
;; that if NOT(x > y) then x > y+1 cannot succeed. The CLP system will
;; return the finite failure. This is the fundamental difference
;; between CLP and ordinary Prolog: Prolog is based on `generate and
;; test', whereas CLP do `test and then generate'. They solve
;; constraints using uninstantiated variables; they instantiate
;; afterwards.
;; Incidentally, your noto does not play well will committed choice
;; like condu and conda, which is expected (one has to be very careful
;; nesting of condu and conda). There is an easy way to make condu and
;; conda sound (at least, reporting a run-time error when attempting
;; to instantiate a non-local variable). The best way to solve this
;; problems is with mode inference (as Mercury or Twelf do).
;; Incidentally, the mini-Kanren is based on lazy lists (on streams).
;; The monad of mini-Kanren is
;; data L a = Zero | One a | Cons a (() -> L a)
;; which is the ordinary lazy list with the special case for
;; one-element list.
;; Cheers,
;; Oleg