forked from pengxingang/Pocket2Mol
-
Notifications
You must be signed in to change notification settings - Fork 0
/
sample.py
336 lines (303 loc) · 12.5 KB
/
sample.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
from copy import deepcopy
import os
# import sys
# sys.path.append('.')
import shutil
import argparse
# import random
import torch
import numpy as np
from torch_geometric.data import Batch
from easydict import EasyDict
from tqdm.auto import tqdm
from rdkit import Chem
from models.maskfill import MaskFillModelVN
from models.sample import *
from utils.transforms import *
from utils.datasets import get_dataset
from utils.misc import *
from utils.data import FOLLOW_BATCH
from utils.reconstruct import *
# from utils.chem import *
STATUS_RUNNING = 'running'
STATUS_FINISHED = 'finished'
STATUS_FAILED = 'failed'
def logp_to_rank_prob(logp, weight=1.0):
logp_sum = np.array([np.sum(l) for l in logp])
prob = np.exp(logp_sum) + 1
prob = prob * np.array(weight)
return prob / prob.sum()
@torch.no_grad() # for a protein-ligand
def get_init(data, model, transform, threshold):
batch = Batch.from_data_list([data], follow_batch=FOLLOW_BATCH) #batch only contains one data
### Predict next atoms
model.eval()
predicitions = model.sample_init(
compose_feature = batch.compose_feature.float(),
compose_pos = batch.compose_pos,
# idx_ligand = batch.idx_ligand_ctx_in_compose,
idx_protein = batch.idx_protein_in_compose,
compose_knn_edge_index = batch.compose_knn_edge_index,
compose_knn_edge_feature = batch.compose_knn_edge_feature,
n_samples_pos=-1,
n_samples_atom=5,
)
data = data.to('cpu')
# no frontier
if not predicitions[0]:
data.status = STATUS_FINISHED
return [data]
# has frontiers
data.status = STATUS_RUNNING
(has_frontier, idx_frontier, p_frontier,
idx_focal_in_compose, p_focal,
pos_generated, pdf_pos, abs_pos_mu, pos_sigma, pos_pi,
element_pred, element_prob, has_atom_prob) = [p.cpu() for p in predicitions]
while True:
data_next_list = get_next_step(
data,
p_focal = p_focal,
pos_generated = pos_generated,
pdf_pos = pdf_pos,
element_pred = element_pred,
element_prob = element_prob,
has_atom_prob = has_atom_prob,
# ind_pred = ind_pred,
# ind_prob = ind_prob,
bond_index = torch.empty([2, 0]),
bond_type = torch.empty([0]),
bond_prob = torch.empty([0]),
transform = transform,
threshold=threshold
)
data_next_list = [data for data in data_next_list if data.is_high_prob]
if len(data_next_list) == 0:
if torch.all(pdf_pos < threshold.pos_threshold):
threshold.pos_threshold = threshold.pos_threshold / 2
print('Positional probability threshold is too high. Change to %f' % threshold.pos_threshold)
elif torch.all(p_focal < threshold.focal_threshold):
threshold.focal_threshold = threshold.focal_threshold / 2
print('Focal probability threshold is too high. Change to %f' % threshold.focal_threshold)
elif torch.all(element_prob < threshold.element_threshold):
threshold.element_threshold = threshold.element_threshold / 2
print('Element probability threshold is too high. Change to %f' % threshold.element_threshold)
else:
print('Initialization failed.')
else:
break
return data_next_list
@torch.no_grad() # for a protein-ligand
def get_next(data, model, transform, threshold):
batch = Batch.from_data_list([data], follow_batch=FOLLOW_BATCH) #batch only contains one data
### Predict next atoms
model.eval()
predicitions = model.sample(
compose_feature = batch.compose_feature.float(),
compose_pos = batch.compose_pos,
idx_ligand = batch.idx_ligand_ctx_in_compose,
idx_protein = batch.idx_protein_in_compose,
compose_knn_edge_index = batch.compose_knn_edge_index,
compose_knn_edge_feature = batch.compose_knn_edge_feature,
ligand_context_bond_index = batch.ligand_context_bond_index,
ligand_context_bond_type = batch.ligand_context_bond_type,
n_samples_pos=-1,
n_samples_atom=5
)
data = data.to('cpu')
# no frontier
if not predicitions[0]:
data.status = STATUS_FINISHED
return [data]
# has frontiers
(has_frontier, idx_frontier, p_frontier,
idx_focal_in_compose, p_focal,
pos_generated, pdf_pos, abs_pos_mu, pos_sigma, pos_pi,
element_pred, element_prob, has_atom_prob,
bond_index, bond_type, bond_prob) = [p.cpu() for p in predicitions]
data_next_list = get_next_step(
data,
p_focal = p_focal,
pos_generated = pos_generated,
pdf_pos = pdf_pos,
element_pred = element_pred,
element_prob = element_prob,
has_atom_prob = has_atom_prob,
bond_index = bond_index,
bond_type = bond_type,
bond_prob = bond_prob,
transform = transform,
threshold = threshold
)
data_next_list = [data for data in data_next_list if data.is_high_prob]
return data_next_list
def print_pool_status(pool, logger):
logger.info('[Pool] Queue %d | Finished %d | Failed %d' % (
len(pool.queue), len(pool.finished), len(pool.failed)
))
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--config', type=str, default='./configs/sample.yml')
parser.add_argument('--outdir', type=str, default='./outputs')
parser.add_argument('--device', type=str, default='cuda')
parser.add_argument('-i', '--data_id', type=str, default='0')
args = parser.parse_args()
# check existing in output dir
os.makedirs(args.outdir, exist_ok=True)
all_files = os.listdir(args.outdir)
file_name = os.path.basename(args.config)[:-4] + '_' + args.data_id + '_'
files_target = [f for f in all_files if f.startswith(file_name)]
if len(files_target) > 0: # # has been sampled before
for file_name in files_target:
file_dir = os.path.join(args.outdir, file_name)
if os.path.exists(os.path.join(file_dir, 'samples_all.pt')): # # finished
print('Already finished! data_id: %s' % args.data_id)
exit(0)
else:
print('Has been terminated data_id: %s' % args.data_id)
shutil.rmtree(file_dir)
# # Load configs
config = load_config(args.config)
config_name = os.path.basename(args.config)[:os.path.basename(args.config).rfind('.')]
seed_all(config.sample.seed)
# # Get pdb id or data_idx
data_id = int(args.data_id)
# # Logging
log_dir = get_new_log_dir(args.outdir, prefix='%s_%s' % (config_name, data_id))
logger = get_logger('sample', log_dir)
logger.info(args)
logger.info(config)
shutil.copyfile(args.config, os.path.join(log_dir, os.path.basename(args.config)))
# # Transform
logger.info('Loading data...')
protein_featurizer = FeaturizeProteinAtom()
ligand_featurizer = FeaturizeLigandAtom()
contrastive_sampler = ContrastiveSample()
transform = Compose([
RefineData(),
LigandCountNeighbors(),
protein_featurizer,
ligand_featurizer,
])
# # Data
if config.data.data_name == 'test':
dataset, subsets = get_dataset(
config = config.data.dataset,
transform = transform,
)
testset = subsets['test']
base_data = testset[data_id]
# # Model (Main)
logger.info('Loading main model...')
ckpt = torch.load(config.model.checkpoint, map_location=args.device)
model = MaskFillModelVN(
ckpt['config'].model,
num_classes = contrastive_sampler.num_elements,
protein_atom_feature_dim = protein_featurizer.feature_dim,
ligand_atom_feature_dim = ligand_featurizer.feature_dim,
num_bond_types = 3,
).to(args.device)
model.load_state_dict(ckpt['model'])
pool = EasyDict({
'queue': [],
'failed': [],
'finished': [],
'duplicate': [],
'smiles': set(),
})
# # Sample the first atoms
logger.info('Initialization')
pbar = tqdm(total=config.sample.beam_size, desc='InitSample')
mask = LigandMaskAll()
atom_composer = AtomComposer(protein_featurizer.feature_dim, ligand_featurizer.feature_dim, model.config.encoder.knn)
if config.sample.mask_init:
masking = Compose([
mask,
atom_composer
])
data = transform_data(deepcopy(base_data), masking)
init_data_list = get_init(data.to(args.device), # sample the initial atoms
model = model,
transform=atom_composer,
threshold=config.sample.threshold
)
pool.queue = init_data_list
if len(pool.queue) > config.sample.beam_size:
pool.queue = init_data_list[:config.sample.beam_size]
pbar.update(config.sample.beam_size)
else:
pbar.update(len(pool.queue))
else:
masking = Compose([
LigandBFSMask(min_ratio=1., min_num_unmasked=1),
atom_composer
])
while len(pool.queue) < config.sample.num_samples // 10:
queue_size_before = len(pool.queue)
data = transform_data(deepcopy(base_data), masking)
data.status = STATUS_RUNNING
pool.queue += [data]
if len(pool.queue) > config.sample.num_samples:
pool.queue = pool.queue[:config.sample.num_samples]
pbar.update(len(pool.queue) - queue_size_before)
pbar.close()
print_pool_status(pool, logger)
logger.info('Saving samples...')
# torch.save(pool, os.path.join(log_dir, 'samples_init.pt'))
# # Sampling loop
logger.info('Start sampling')
global_step = 0
while len(pool.finished) < config.sample.num_samples:
global_step += 1
if global_step > config.sample.max_steps:
break
queue_size = len(pool.queue)
# # sample candidate new mols from each parent mol
queue_tmp = []
for data in tqdm(pool.queue):
nexts = []
data_next_list = get_next(
data.to(args.device),
model = model,
transform = atom_composer,
threshold = config.sample.threshold
)
for data_next in data_next_list:
if data_next.status == STATUS_FINISHED:
try:
rdmol = reconstruct_from_generated_with_edges(data_next)
data_next.rdmol = rdmol
mol = Chem.MolFromSmiles(Chem.MolToSmiles(rdmol))
smiles = Chem.MolToSmiles(mol)
data_next.smiles = smiles
if smiles in pool.smiles:
logger.warning('Duplicate molecule: %s' % smiles)
pool.duplicate.append(data_next)
elif '.' in smiles:
logger.warning('Failed molecule: %s' % smiles)
pool.failed.append(data_next)
else: # Pass checks
logger.info('Success: %s' % smiles)
pool.finished.append(data_next)
pool.smiles.add(smiles)
except MolReconsError:
logger.warning('Reconstruction error encountered.')
pool.failed.append(data_next)
elif data_next.status == STATUS_RUNNING:
nexts.append(data_next)
queue_tmp += nexts
# # random choose mols from candidates
prob = logp_to_rank_prob(np.array([p.average_logp[2:] for p in queue_tmp]),) # (logp_focal, logpdf_pos), logp_element, logp_hasatom, logp_bond
n_tmp = len(queue_tmp)
next_idx = np.random.choice(np.arange(n_tmp), p=prob, size=min(config.sample.beam_size, n_tmp), replace=False)
pool.queue = [queue_tmp[idx] for idx in next_idx]
print_pool_status(pool, logger)
# torch.save(pool, os.path.join(log_dir, 'samples_%d.pt' % global_step))
# # Save sdf mols
sdf_dir = os.path.join(log_dir, 'SDF')
os.makedirs(sdf_dir)
with open(os.path.join(log_dir, 'SMILES.txt'), 'a') as smiles_f:
for i, data_finished in enumerate(pool['finished']):
smiles_f.write(data_finished.smiles + '\n')
rdmol = data_finished.rdmol
Chem.MolToMolFile(rdmol, os.path.join(sdf_dir, '%d.sdf' % i))
torch.save(pool, os.path.join(log_dir, 'samples_all.pt'))