forked from corticph/prefix-beam-search
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathprefix_beam_search.py
84 lines (70 loc) · 2.82 KB
/
prefix_beam_search.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
from collections import defaultdict, Counter
from string import ascii_lowercase
import re
import numpy as np
def prefix_beam_search(ctc, lm=None, k=25, alpha=0.30, beta=5, prune=0.001):
"""
Performs prefix beam search on the output of a CTC network.
Args:
ctc (np.ndarray): The CTC output. Should be a 2D array (timesteps x alphabet_size)
lm (func): Language model function. Should take as input a string and output a probability.
k (int): The beam width. Will keep the 'k' most likely candidates at each timestep.
alpha (float): The language model weight. Should usually be between 0 and 1.
beta (float): The language model compensation term. The higher the 'alpha', the higher the 'beta'.
prune (float): Only extend prefixes with chars with an emission probability higher than 'prune'.
Retruns:
string: The decoded CTC output.
"""
lm = (lambda l: 1) if lm is None else lm # if no LM is provided, just set to function returning 1
W = lambda l: re.findall(r'\w+[\s|>]', l)
alphabet = list(ascii_lowercase) + [' ', '>', '%']
F = ctc.shape[1]
ctc = np.vstack((np.zeros(F), ctc)) # just add an imaginative zero'th step (will make indexing more intuitive)
T = ctc.shape[0]
# STEP 1: Initiliazation
O = ''
Pb, Pnb = defaultdict(Counter), defaultdict(Counter)
Pb[0][O] = 1
Pnb[0][O] = 0
A_prev = [O]
# END: STEP 1
# STEP 2: Iterations and pruning
for t in range(1, T):
pruned_alphabet = [alphabet[i] for i in np.where(ctc[t] > prune)[0]]
for l in A_prev:
if len(l) > 0 and l[-1] == '>':
Pb[t][l] = Pb[t - 1][l]
Pnb[t][l] = Pnb[t - 1][l]
continue
for c in pruned_alphabet:
c_ix = alphabet.index(c)
# END: STEP 2
# STEP 3: “Extending” with a blank
if c == '%':
Pb[t][l] += ctc[t][-1] * (Pb[t - 1][l] + Pnb[t - 1][l])
# END: STEP 3
# STEP 4: Extending with the end character
else:
l_plus = l + c
if len(l) > 0 and c == l[-1]:
Pnb[t][l_plus] += ctc[t][c_ix] * Pb[t - 1][l]
Pnb[t][l] += ctc[t][c_ix] * Pnb[t - 1][l]
# END: STEP 4
# STEP 5: Extending with any other non-blank character and LM constraints
elif len(l.replace(' ', '')) > 0 and c in (' ', '>'):
lm_prob = lm(l_plus.strip(' >')) ** alpha
Pnb[t][l_plus] += lm_prob * ctc[t][c_ix] * (Pb[t - 1][l] + Pnb[t - 1][l])
else:
Pnb[t][l_plus] += ctc[t][c_ix] * (Pb[t - 1][l] + Pnb[t - 1][l])
# END: STEP 5
# STEP 6: Make use of discarded prefixes
if l_plus not in A_prev:
Pb[t][l_plus] += ctc[t][-1] * (Pb[t - 1][l_plus] + Pnb[t - 1][l_plus])
Pnb[t][l_plus] += ctc[t][c_ix] * Pnb[t - 1][l_plus]
# END: STEP 6
# STEP 7: Select most probable prefixes
A_next = Pb[t] + Pnb[t]
sorter = lambda l: A_next[l] * (len(W(l)) + 1) ** beta
A_prev = sorted(A_next, key=sorter, reverse=True)[:k]
# END: STEP 7
return A_prev[0].strip('>')