forked from deepinsight/insightface
-
Notifications
You must be signed in to change notification settings - Fork 1
/
test_gaze.py
239 lines (209 loc) · 8.73 KB
/
test_gaze.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
from models import GazeModel
import sys
import glob
import torch
import os
import os.path as osp
import numpy as np
import cv2
import os.path as osp
import insightface
from insightface.app import FaceAnalysis
from insightface.utils import face_align
import menpo.io as mio
from menpo.image import Image
from menpo.shape import PointCloud, TriMesh
def angles_from_vec(vec):
x, y, z = -vec[2], vec[1], -vec[0]
theta = np.arctan2(y, x)
phi = np.arctan2(np.sqrt(x**2 + y**2), z) - np.pi/2
theta_x, theta_y = phi, theta
return theta_x, theta_y
def vec_from_eye(eye, iris_lms_idx):
p_iris = eye[iris_lms_idx] - eye[:32].mean(axis=0)
vec = p_iris.mean(axis=0)
vec /= np.linalg.norm(vec, axis=0)
return vec
def angles_and_vec_from_eye(eye, iris_lms_idx):
vec = vec_from_eye(eye, iris_lms_idx)
theta_x, theta_y = angles_from_vec(vec)
return theta_x, theta_y, vec
def vec_from_angles(rx, ry):
rx = np.deg2rad(rx)
ry = np.deg2rad(ry)
x1 = np.sin(np.pi/2 + rx) * np.cos(ry)
y1 = np.sin(np.pi/2 + rx) * np.sin(ry)
z1 = np.cos(np.pi/2 + rx)
x, y, z = -z1, y1, -x1
vec = np.array([x, y, z])
vec /= np.linalg.norm(vec, axis=0)
return vec
class GazeHandler():
def __init__(self, ckpt_path, res_eyes_path='assets/eyes3d.pkl'):
R = 12.0
eyes_mean = mio.import_pickle(res_eyes_path)
idxs481 = eyes_mean['mask481']['idxs']
self.tri481 = eyes_mean['mask481']['trilist']
self.iris_idx_481 = eyes_mean['mask481']['idxs_iris']
self.mean_l = eyes_mean['left_points'][idxs481][:, [0, 2, 1]]
self.mean_r = eyes_mean['right_points'][idxs481][:, [0, 2, 1]]
self.num_face = 1103
self.num_eye = 481
self.app = FaceAnalysis()
det_size = 320
self.app.prepare(ctx_id=0, det_size=(det_size, det_size))
self.input_size = 160
self.model = GazeModel.load_from_checkpoint(ckpt_path).cuda()
self.model.eval()
def draw_item(self, eimg, item):
#bbox, kps, eye_kps = item
eye_kps = item
#eye_kps[:,2] *= 10.0
eye_l = eye_kps[:self.num_eye,:]
eye_r = eye_kps[self.num_eye:,:]
for _eye in [eye_l, eye_r]:
tmp = _eye[:,0].copy()
_eye[:,0] = _eye[:,1].copy()
_eye[:,1] = tmp
#img_crp, trf_crp = image.crop_to_pointcloud_proportion(PointCloud(np.concatenate((eye_l[:, :2], eye_r[:, :2]))), 0.4, return_transform=True)
#img_crp.view(1)
#trf_crp.pseudoinverse().apply(TriMesh(eye_l, tri481).with_dims([0, 1])).view(1, marker_size=0.01, line_width=0.1)
#trf_crp.pseudoinverse().apply(PointCloud(eye_l[iris_idx_481]).with_dims([0, 1])).view(1)
#trf_crp.pseudoinverse().apply(TriMesh(eye_r, tri481).with_dims([0, 1])).view(1, marker_size=0.01, line_width=0.1)
#trf_crp.pseudoinverse().apply(PointCloud(eye_r[iris_idx_481]).with_dims([0, 1])).view(1)
for _eye in [eye_l, eye_r]:
_kps = _eye[self.iris_idx_481,:].astype(np.int)
for l in range(_kps.shape[0]):
color = (0, 255, 0)
cv2.circle(eimg, (_kps[l][1], _kps[l][0]), 4, color, 4)
#print(tri481.shape)
for _tri in self.tri481:
color = (0, 0, 255)
for k in range(3):
ix = _tri[k]
iy = _tri[(k+1)%3]
x = _eye[ix,:2].astype(np.int)[::-1]
y = _eye[iy,:2].astype(np.int)[::-1]
cv2.line(eimg, x, y, color, 1)
theta_x_l, theta_y_l, vec_l = angles_and_vec_from_eye(eye_l, self.iris_idx_481)
theta_x_r, theta_y_r, vec_r = angles_and_vec_from_eye(eye_r, self.iris_idx_481)
gaze_pred = np.array([(theta_x_l + theta_x_r) / 2, (theta_y_l + theta_y_r) / 2])
diag = np.sqrt(float(eimg.shape[0]*eimg.shape[1]))
#img_crp, trf_crp = image.crop_to_pointcloud_proportion(PointCloud(lms[17:-20]), 0.1, return_transform=True)
#diag = img_crp.diagonal()
eye_pos_left = eye_l[self.iris_idx_481].mean(axis=0)[[0, 1]]
eye_pos_right = eye_r[self.iris_idx_481].mean(axis=0)[[0, 1]]
##fig = plt.figure(0)
##image.view(0, figure_size=(4,4))
#PointCloud(eye_l[iris_idx_481]).with_dims([0, 1]).view(0, marker_size=3, figure_size=(4,4))
#PointCloud(eye_r[iris_idx_481]).with_dims([0, 1]).view(0, marker_size=3, figure_size=(4,4))
## pred ---
gaze_pred = np.array([theta_x_l, theta_y_l])
dx = 0.4*diag * np.sin(gaze_pred[1])
dy = 0.4*diag * np.sin(gaze_pred[0])
x = np.array([eye_pos_left[1], eye_pos_left[0]])
y = x.copy()
y[0] += dx
y[1] += dy
x = x.astype(np.int)
y = y.astype(np.int)
color = (0,255,255)
cv2.line(eimg, x, y, color, 2)
gaze_pred = np.array([theta_x_r, theta_y_r])
dx = 0.4*diag * np.sin(gaze_pred[1])
dy = 0.4*diag * np.sin(gaze_pred[0])
x = np.array([eye_pos_right[1], eye_pos_right[0]])
y = x.copy()
y[0] += dx
y[1] += dy
x = x.astype(np.int)
y = y.astype(np.int)
color = (0,255,255)
cv2.line(eimg, x, y, color, 2)
return eimg
def draw_on(self, eimg, results):
face_sizes = [ (x[0][2] - x[0][0]) for x in results]
max_index = np.argmax(face_sizes)
max_face_size = face_sizes[max_index]
rescale = 300.0 / max_face_size
#print(max_face_size, rescale)
oimg = eimg.copy()
eimg = cv2.resize(eimg, None, fx=rescale, fy=rescale)
for pred in results:
_, _, eye_kps = pred
eye_kps = eye_kps.copy()
eye_kps *= rescale
eimg = self.draw_item(eimg, eye_kps)
eimg = cv2.resize(eimg, (oimg.shape[1], oimg.shape[0]))
return eimg
pred_max = results[max_index]
bbox, kps, eye_kps = pred_max
width = bbox[2] - bbox[0]
center = (kps[0]+kps[1]) / 2.0
#_size = np.abs(kps[1][0] - kps[0][0]) * 1.5
_size = max(width/1.5, np.abs(kps[1][0] - kps[0][0]) ) * 1.5
rotate = 0
_scale = self.input_size / _size
aimg, M = face_align.transform(oimg, center, self.input_size, _scale, rotate)
eye_kps = face_align.trans_points(eye_kps, M)
center_eye_rescale = 4.0
aimg = cv2.resize(aimg, None, fx=center_eye_rescale, fy=center_eye_rescale)
eye_kps *= center_eye_rescale
aimg = self.draw_item(aimg, eye_kps)
#return aimg
rimg = np.zeros( (max(eimg.shape[0], aimg.shape[0]), eimg.shape[1]+aimg.shape[1], 3), dtype=np.uint8)
rimg[:eimg.shape[0], :eimg.shape[1], :] = eimg
rimg[:aimg.shape[0], eimg.shape[1]:eimg.shape[1]+aimg.shape[1], :] = aimg
return rimg
def get(self, img):
results = []
faces = self.app.get(img)
if len(faces)==0:
return results
for face in faces:
bbox = face.bbox
width = bbox[2] - bbox[0]
kps = face.kps
center = (kps[0]+kps[1]) / 2.0
#_size = np.abs(kps[1][0] - kps[0][0]) * 1.5
_size = max(width/1.5, np.abs(kps[1][0] - kps[0][0]) ) * 1.5
rotate = 0
_scale = self.input_size / _size
aimg, M = face_align.transform(img, center, self.input_size, _scale, rotate)
#eimg = cv2.resize(aimg, None, fx=R, fy=R)
#cv2.imwrite("outputs/a_%s"%name, aimg)
aimg = cv2.cvtColor(aimg, cv2.COLOR_BGR2RGB)
input = aimg.copy()
input = np.transpose(input, (2, 0, 1))
input = np.expand_dims(input, 0)
imgs = torch.Tensor(input).cuda()
imgs.div_(255).sub_(0.5).div_(0.5)
opred = self.model(imgs).detach().cpu().numpy().flatten().reshape( (-1, 3) )
opred[:, 0:2] += 1
opred[:, 0:2] *= (self.input_size // 2)
#opred[:, 0:2] *= 112
opred[:,2] *= 10.0
IM = cv2.invertAffineTransform(M)
pred = face_align.trans_points(opred, IM)
result = (bbox, kps, pred)
results.append(result)
return results
if __name__ == '__main__':
ckpt_path = sys.argv[1]
handler = GazeHandler(ckpt_path)
output_dir = 'outputs/'
if not osp.exists(output_dir):
os.makedirs(output_dir)
input_dir = 'assets/images'
for imgname in os.listdir(input_dir):
imgpath = osp.join(input_dir, imgname)
img = cv2.imread(imgpath)
print(imgpath, imgname)
if img is None:
continue
results = handler.get(img)
if len(results)==0:
continue
eimg = handler.draw_on(img, results)
oimg = np.concatenate((img, eimg), axis=1)
cv2.imwrite(osp.join(output_dir, "%s"%imgname), oimg)