forked from deepinsight/insightface
-
Notifications
You must be signed in to change notification settings - Fork 1
/
test_widerface.py
259 lines (239 loc) · 9.49 KB
/
test_widerface.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
from __future__ import print_function
import argparse
import sys
import os
import time
import numpy as np
import mxnet as mx
from mxnet import ndarray as nd
import cv2
from rcnn.logger import logger
#from rcnn.config import config, default, generate_config
#from rcnn.tools.test_rcnn import test_rcnn
#from rcnn.tools.test_rpn import test_rpn
from rcnn.processing.bbox_transform import nonlinear_pred, clip_boxes, landmark_pred
from rcnn.processing.generate_anchor import generate_anchors_fpn, anchors_plane
from rcnn.processing.nms import gpu_nms_wrapper
from rcnn.processing.bbox_transform import bbox_overlaps
from rcnn.dataset import retinaface
from retinaface import RetinaFace
def parse_args():
parser = argparse.ArgumentParser(
description='Test widerface by retinaface detector')
# general
parser.add_argument('--network',
help='network name',
default='net3',
type=str)
parser.add_argument('--dataset',
help='dataset name',
default='retinaface',
type=str)
parser.add_argument('--image-set',
help='image_set name',
default='val',
type=str)
parser.add_argument('--root-path',
help='output data folder',
default='./data',
type=str)
parser.add_argument('--dataset-path',
help='dataset path',
default='./data/retinaface',
type=str)
parser.add_argument('--gpu',
help='GPU device to test with',
default=0,
type=int)
# testing
parser.add_argument('--prefix',
help='model to test with',
default='',
type=str)
parser.add_argument('--epoch',
help='model to test with',
default=0,
type=int)
parser.add_argument('--output',
help='output folder',
default='./wout',
type=str)
parser.add_argument('--nocrop', help='', action='store_true')
parser.add_argument('--thresh',
help='valid detection threshold',
default=0.02,
type=float)
parser.add_argument('--mode',
help='test mode, 0 for fast, 1 for accurate',
default=1,
type=int)
#parser.add_argument('--pyramid', help='enable pyramid test', action='store_true')
#parser.add_argument('--bbox-vote', help='', action='store_true')
parser.add_argument('--part', help='', default=0, type=int)
parser.add_argument('--parts', help='', default=1, type=int)
args = parser.parse_args()
return args
detector = None
args = None
imgid = -1
def get_boxes(roi, pyramid):
global imgid
im = cv2.imread(roi['image'])
do_flip = False
if not pyramid:
target_size = 1200
max_size = 1600
#do_flip = True
target_size = 1504
max_size = 2000
target_size = 1600
max_size = 2150
im_shape = im.shape
im_size_min = np.min(im_shape[0:2])
im_size_max = np.max(im_shape[0:2])
im_scale = float(target_size) / float(im_size_min)
# prevent bigger axis from being more than max_size:
if np.round(im_scale * im_size_max) > max_size:
im_scale = float(max_size) / float(im_size_max)
scales = [im_scale]
else:
do_flip = True
#TEST_SCALES = [500, 800, 1200, 1600]
TEST_SCALES = [500, 800, 1100, 1400, 1700]
target_size = 800
max_size = 1200
im_shape = im.shape
im_size_min = np.min(im_shape[0:2])
im_size_max = np.max(im_shape[0:2])
im_scale = float(target_size) / float(im_size_min)
# prevent bigger axis from being more than max_size:
if np.round(im_scale * im_size_max) > max_size:
im_scale = float(max_size) / float(im_size_max)
scales = [
float(scale) / target_size * im_scale for scale in TEST_SCALES
]
boxes, landmarks = detector.detect(im,
threshold=args.thresh,
scales=scales,
do_flip=do_flip)
#print(boxes.shape, landmarks.shape)
if imgid >= 0 and imgid < 100:
font = cv2.FONT_HERSHEY_SIMPLEX
for i in range(boxes.shape[0]):
box = boxes[i]
ibox = box[0:4].copy().astype(np.int)
cv2.rectangle(im, (ibox[0], ibox[1]), (ibox[2], ibox[3]),
(255, 0, 0), 2)
#print('box', ibox)
#if len(ibox)>5:
# for l in range(5):
# pp = (ibox[5+l*2], ibox[6+l*2])
# cv2.circle(im, (pp[0], pp[1]), 1, (0, 0, 255), 1)
blur = box[5]
k = "%.3f" % blur
cv2.putText(im, k, (ibox[0] + 2, ibox[1] + 14), font, 0.6,
(0, 255, 0), 2)
#landmarks = box[6:21].reshape( (5,3) )
if landmarks is not None:
for l in range(5):
color = (0, 255, 0)
landmark = landmarks[i][l]
pp = (int(landmark[0]), int(landmark[1]))
if landmark[2] - 0.5 < 0.0:
color = (0, 0, 255)
cv2.circle(im, (pp[0], pp[1]), 1, color, 2)
filename = './testimages/%d.jpg' % imgid
cv2.imwrite(filename, im)
print(filename, 'wrote')
imgid += 1
return boxes
def test(args):
print('test with', args)
global detector
output_folder = args.output
if not os.path.exists(output_folder):
os.mkdir(output_folder)
detector = RetinaFace(args.prefix,
args.epoch,
args.gpu,
network=args.network,
nocrop=args.nocrop,
vote=args.bbox_vote)
imdb = eval(args.dataset)(args.image_set, args.root_path,
args.dataset_path)
roidb = imdb.gt_roidb()
gt_overlaps = np.zeros(0)
overall = [0.0, 0.0]
gt_max = np.array((0.0, 0.0))
num_pos = 0
print('roidb size', len(roidb))
for i in range(len(roidb)):
if i % args.parts != args.part:
continue
#if i%10==0:
# print('processing', i, file=sys.stderr)
roi = roidb[i]
boxes = get_boxes(roi, args.pyramid)
if 'boxes' in roi:
gt_boxes = roi['boxes'].copy()
gt_areas = (gt_boxes[:, 2] - gt_boxes[:, 0] +
1) * (gt_boxes[:, 3] - gt_boxes[:, 1] + 1)
num_pos += gt_boxes.shape[0]
overlaps = bbox_overlaps(boxes.astype(np.float),
gt_boxes.astype(np.float))
#print(im_info, gt_boxes.shape, boxes.shape, overlaps.shape, file=sys.stderr)
_gt_overlaps = np.zeros((gt_boxes.shape[0]))
if boxes.shape[0] > 0:
_gt_overlaps = overlaps.max(axis=0)
#print('max_overlaps', _gt_overlaps, file=sys.stderr)
for j in range(len(_gt_overlaps)):
if _gt_overlaps[j] > 0.5:
continue
#print(j, 'failed', gt_boxes[j], 'max_overlap:', _gt_overlaps[j], file=sys.stderr)
# append recorded IoU coverage level
found = (_gt_overlaps > 0.5).sum()
recall = found / float(gt_boxes.shape[0])
#print('recall', _recall, gt_boxes.shape[0], boxes.shape[0], gt_areas, 'num:', i, file=sys.stderr)
overall[0] += found
overall[1] += gt_boxes.shape[0]
#gt_overlaps = np.hstack((gt_overlaps, _gt_overlaps))
#_recall = (gt_overlaps >= threshold).sum() / float(num_pos)
recall_all = float(overall[0]) / overall[1]
#print('recall_all', _recall, file=sys.stderr)
print('[%d]' % i,
'recall',
recall, (gt_boxes.shape[0], boxes.shape[0]),
'all:',
recall_all,
file=sys.stderr)
else:
print('[%d]' % i, 'detect %d faces' % boxes.shape[0])
_vec = roidb[i]['image'].split('/')
out_dir = os.path.join(output_folder, _vec[-2])
if not os.path.exists(out_dir):
os.mkdir(out_dir)
out_file = os.path.join(out_dir, _vec[-1].replace('jpg', 'txt'))
with open(out_file, 'w') as f:
name = '/'.join(roidb[i]['image'].split('/')[-2:])
f.write("%s\n" % (name))
f.write("%d\n" % (boxes.shape[0]))
for b in range(boxes.shape[0]):
box = boxes[b]
f.write(
"%d %d %d %d %g \n" %
(box[0], box[1], box[2] - box[0], box[3] - box[1], box[4]))
def main():
global args
args = parse_args()
args.pyramid = False
args.bbox_vote = False
if args.mode == 1:
args.pyramid = True
args.bbox_vote = True
elif args.mode == 2:
args.pyramid = True
args.bbox_vote = False
logger.info('Called with argument: %s' % args)
test(args)
if __name__ == '__main__':
main()