forked from deepinsight/insightface
-
Notifications
You must be signed in to change notification settings - Fork 1
/
train.py
236 lines (222 loc) · 8.59 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import logging
import argparse
from data import FaceSegIter
import mxnet as mx
import mxnet.optimizer as optimizer
import numpy as np
import os
import sys
import math
import random
import cv2
from config import config, default, generate_config
from optimizer import ONadam
from metric import LossValueMetric, NMEMetric
sys.path.append(os.path.join(os.path.dirname(__file__), 'symbol'))
import sym_heatmap
#import sym_fc
#from symbol import fc
args = None
logger = logging.getLogger()
logger.setLevel(logging.INFO)
def main(args):
_seed = 727
random.seed(_seed)
np.random.seed(_seed)
mx.random.seed(_seed)
ctx = []
cvd = os.environ['CUDA_VISIBLE_DEVICES'].strip()
if len(cvd) > 0:
for i in range(len(cvd.split(','))):
ctx.append(mx.gpu(i))
if len(ctx) == 0:
ctx = [mx.cpu()]
print('use cpu')
else:
print('gpu num:', len(ctx))
#ctx = [mx.gpu(0)]
args.ctx_num = len(ctx)
args.batch_size = args.per_batch_size * args.ctx_num
config.per_batch_size = args.per_batch_size
print('Call with', args, config)
train_iter = FaceSegIter(
path_imgrec=os.path.join(config.dataset_path, 'train.rec'),
batch_size=args.batch_size,
per_batch_size=args.per_batch_size,
aug_level=1,
exf=args.exf,
args=args,
)
data_shape = train_iter.get_data_shape()
#label_shape = train_iter.get_label_shape()
sym = sym_heatmap.get_symbol(num_classes=config.num_classes)
if len(args.pretrained) == 0:
#data_shape_dict = {'data' : (args.per_batch_size,)+data_shape, 'softmax_label' : (args.per_batch_size,)+label_shape}
data_shape_dict = train_iter.get_shape_dict()
arg_params, aux_params = sym_heatmap.init_weights(sym, data_shape_dict)
else:
vec = args.pretrained.split(',')
print('loading', vec)
_, arg_params, aux_params = mx.model.load_checkpoint(
vec[0], int(vec[1]))
#sym, arg_params, aux_params = get_symbol(args, arg_params, aux_params)
model = mx.mod.Module(
context=ctx,
symbol=sym,
label_names=train_iter.get_label_names(),
)
#lr = 1.0e-3
#lr = 2.5e-4
_rescale_grad = 1.0 / args.ctx_num
#_rescale_grad = 1.0/args.batch_size
#lr = args.lr
#opt = optimizer.Nadam(learning_rate=args.lr, wd=args.wd, rescale_grad=_rescale_grad, clip_gradient=5.0)
if args.optimizer == 'onadam':
opt = ONadam(learning_rate=args.lr,
wd=args.wd,
rescale_grad=_rescale_grad,
clip_gradient=5.0)
elif args.optimizer == 'nadam':
opt = optimizer.Nadam(learning_rate=args.lr,
rescale_grad=_rescale_grad)
elif args.optimizer == 'rmsprop':
opt = optimizer.RMSProp(learning_rate=args.lr,
rescale_grad=_rescale_grad)
elif args.optimizer == 'adam':
opt = optimizer.Adam(learning_rate=args.lr, rescale_grad=_rescale_grad)
else:
opt = optimizer.SGD(learning_rate=args.lr,
momentum=0.9,
wd=args.wd,
rescale_grad=_rescale_grad)
initializer = mx.init.Xavier(rnd_type='gaussian',
factor_type="in",
magnitude=2)
_cb = mx.callback.Speedometer(args.batch_size, args.frequent)
_metric = LossValueMetric()
#_metric = NMEMetric()
#_metric2 = AccMetric()
#eval_metrics = [_metric, _metric2]
eval_metrics = [_metric]
lr_steps = [int(x) for x in args.lr_step.split(',')]
print('lr-steps', lr_steps)
global_step = [0]
def val_test():
all_layers = sym.get_internals()
vsym = all_layers['heatmap_output']
vmodel = mx.mod.Module(symbol=vsym, context=ctx, label_names=None)
#model.bind(data_shapes=[('data', (args.batch_size, 3, image_size[0], image_size[1]))], label_shapes=[('softmax_label', (args.batch_size,))])
vmodel.bind(data_shapes=[('data', (args.batch_size, ) + data_shape)])
arg_params, aux_params = model.get_params()
vmodel.set_params(arg_params, aux_params)
for target in config.val_targets:
_file = os.path.join(config.dataset_path, '%s.rec' % target)
if not os.path.exists(_file):
continue
val_iter = FaceSegIter(
path_imgrec=_file,
batch_size=args.batch_size,
#batch_size = 4,
aug_level=0,
args=args,
)
_metric = NMEMetric()
val_metric = mx.metric.create(_metric)
val_metric.reset()
val_iter.reset()
for i, eval_batch in enumerate(val_iter):
#print(eval_batch.data[0].shape, eval_batch.label[0].shape)
batch_data = mx.io.DataBatch(eval_batch.data)
model.forward(batch_data, is_train=False)
model.update_metric(val_metric, eval_batch.label)
nme_value = val_metric.get_name_value()[0][1]
print('[%d][%s]NME: %f' % (global_step[0], target, nme_value))
def _batch_callback(param):
_cb(param)
global_step[0] += 1
mbatch = global_step[0]
for _lr in lr_steps:
if mbatch == _lr:
opt.lr *= 0.2
print('lr change to', opt.lr)
break
if mbatch % 1000 == 0:
print('lr-batch-epoch:', opt.lr, param.nbatch, param.epoch)
if mbatch > 0 and mbatch % args.verbose == 0:
val_test()
if args.ckpt == 1:
msave = mbatch // args.verbose
print('saving', msave)
arg, aux = model.get_params()
mx.model.save_checkpoint(args.prefix, msave, model.symbol, arg,
aux)
if mbatch == lr_steps[-1]:
if args.ckpt == 2:
#msave = mbatch//args.verbose
msave = 1
print('saving', msave)
arg, aux = model.get_params()
mx.model.save_checkpoint(args.prefix, msave, model.symbol, arg,
aux)
sys.exit(0)
train_iter = mx.io.PrefetchingIter(train_iter)
model.fit(
train_iter,
begin_epoch=0,
num_epoch=9999,
#eval_data = val_iter,
eval_data=None,
eval_metric=eval_metrics,
kvstore='device',
optimizer=opt,
initializer=initializer,
arg_params=arg_params,
aux_params=aux_params,
allow_missing=True,
batch_end_callback=_batch_callback,
epoch_end_callback=None,
)
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='Train face alignment')
# general
parser.add_argument('--network',
help='network name',
default=default.network,
type=str)
parser.add_argument('--dataset',
help='dataset name',
default=default.dataset,
type=str)
args, rest = parser.parse_known_args()
generate_config(args.network, args.dataset)
parser.add_argument('--prefix',
default=default.prefix,
help='directory to save model.')
parser.add_argument('--pretrained', default=default.pretrained, help='')
parser.add_argument('--optimizer', default='nadam', help='')
parser.add_argument('--lr', type=float, default=default.lr, help='')
parser.add_argument('--wd', type=float, default=default.wd, help='')
parser.add_argument('--per-batch-size',
type=int,
default=default.per_batch_size,
help='')
parser.add_argument('--lr-step',
help='learning rate steps (in epoch)',
default=default.lr_step,
type=str)
parser.add_argument('--ckpt', type=int, default=1, help='')
parser.add_argument('--norm', type=int, default=0, help='')
parser.add_argument('--exf', type=int, default=1, help='')
parser.add_argument('--frequent',
type=int,
default=default.frequent,
help='')
parser.add_argument('--verbose',
type=int,
default=default.verbose,
help='')
args = parser.parse_args()
main(args)