-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrainval_pointnet.py
224 lines (184 loc) · 9.28 KB
/
trainval_pointnet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
import numpy as np
import argparse
import torch
from datasets import Fish_Ply
from models.pointNet.pointnet import PointNetReg as Pointnet
from util.osutils import mkdir_p, isfile, join
from util.logger import Logger
from util.training_util import adjust_learning_rate, save_checkpoint, three_view_with_pointnet
from util.evaluation_util import accuracy_coord, AverageMeter
best_acc = 0
device = None
def main(args):
global best_acc
global device
# create checkpoint dir
mkdir_p(args.checkpoint)
# create model
print("==> creating pointnet as backbone")
model = Pointnet(k=3*args.num_classes, num_points = 1000)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
if torch.cuda.device_count() > 1:
print('Using', torch.cuda.device_count(), 'GPUs.')
model = torch.nn.DataParallel(model)
model.to(device)
# define loss function (criterion) and optimizer
criterion = torch.nn.MSELoss(reduction='elementwise_mean').to(device)
optimizer = torch.optim.Adam(model.parameters(), lr=args.lr, weight_decay=args.weight_decay)
# optionally resume from a checkpoint
title = 'rigging network'
if args.resume:
if isfile(args.resume):
print("=> loading checkpoint '{}'".format(args.resume))
checkpoint = torch.load(args.resume)
args.start_epoch = checkpoint['epoch']
best_acc = checkpoint['best_acc']
model.load_state_dict(checkpoint['state_dict'])
optimizer.load_state_dict(checkpoint['optimizer'])
print("=> loaded checkpoint '{}' (epoch {})"
.format(args.resume, checkpoint['epoch']))
logger = Logger(join(args.checkpoint, 'log.txt'), title=title, resume=True)
else:
print("=> no checkpoint found at '{}'".format(args.resume))
else:
logger = Logger(join(args.checkpoint, 'log.txt'), title=title)
logger.set_names(['Epoch', 'LR', 'Train Loss', 'Val Loss', 'Train Acc', 'Val Acc'])
print(' Total params: %.2fM' % (sum(p.numel() for p in model.parameters()) / 1000000.0))
# Data loading code
train_loader = torch.utils.data.DataLoader(
Fish_Ply(args.json_file, args.img_folder, sample_num=1000), batch_size=args.train_batch,
shuffle=True, num_workers=args.workers, pin_memory=True)
val_loader = torch.utils.data.DataLoader(
Fish_Ply(args.json_file, args.img_folder, sample_num=1000, train=False), batch_size=args.test_batch,
shuffle=False, num_workers=args.workers, pin_memory=True)
if args.evaluate:
print('\nEvaluation only')
loss, acc = validate(val_loader, model, criterion, args.debug)
print('loss = {0}, accuracy = {1}'.format(loss, acc))
return
lr = args.lr
for epoch in range(args.start_epoch, args.epochs):
lr = adjust_learning_rate(optimizer, epoch, lr, args.schedule, args.gamma)
print('\nEpoch: %d | LR: %.8f' % (epoch + 1, lr))
# train for one epoch
train_loss, train_acc = train(train_loader, model, criterion, optimizer, args.debug)
# evaluate on validation set
valid_loss, valid_acc = validate(val_loader, model, criterion, args.debug)
# append logger file
logger.append([epoch + 1, lr, train_loss, valid_loss, train_acc, valid_acc])
# remember best acc and save checkpoint
is_best = valid_acc > best_acc
best_acc = max(valid_acc, best_acc)
save_checkpoint({
'epoch': epoch + 1,
'state_dict': model.state_dict(),
'best_acc': best_acc,
'optimizer': optimizer.state_dict(),
}, is_best, checkpoint=args.checkpoint)
logger.close()
def train(train_loader, model, criterion, optimizer, debug=False):
global device
losses = AverageMeter()
acces = AverageMeter()
# switch to train mode
model.train()
for i, (inputs, target, meta) in enumerate(train_loader):
if debug: # visualize groundtruth and predictions
for i in range(inputs.size(0)):
inp = inputs[i].squeeze().numpy()
tar = target[i].numpy()
three_view_with_pointnet(inp, tar)
if inputs.size(0) == 1:
inputs = np.repeat(inputs, 2, axis=0)
target = np.repeat(target, 2, axis=0)
inputs = np.transpose(inputs,(0,2,1))
input_var = inputs.to(device)
target_var = target.view(target.shape[0], -1).to(device)
# compute output
output,_ = model(input_var)
score_map = output.data.cpu()
loss = criterion(output, target_var)
acc = accuracy_coord(score_map, target_var.data.cpu())
# measure accuracy and record loss
losses.update(loss.data, inputs.size(0))
acces.update(acc[0], inputs.size(0))
# compute gradient and do SGD step
optimizer.zero_grad()
loss.backward()
optimizer.step()
print("({0:d}/{1:d}) Loss: {2:.10f} | Acc: {3: .10f}".format(i + 1, len(train_loader), losses.avg, acces.avg))
return losses.avg, acces.avg
def validate(val_loader, model, criterion, debug=False):
losses = AverageMeter()
acces = AverageMeter()
# switch to evaluate mode
model.eval()
for i, (inputs, target, meta) in enumerate(val_loader):
if debug: # visualize groundtruth and predictions
for i in range(inputs.size(0)):
inp = inputs[i].squeeze().numpy()
tar = target[i].numpy()
three_view_with_pointnet(inp, tar)
if inputs.size(0) == 1:
inputs = np.repeat(inputs, 2, axis=0)
target = np.repeat(target, 2, axis=0)
inputs = np.transpose(inputs, (0, 2, 1))
input_var = inputs.to(device)
target_var = target.view(target.shape[0], -1).to(device)
# compute output
output,_ = model(input_var)
score_map = output.data.cpu()
loss = criterion(output, target_var)
acc = accuracy_coord(score_map, target_var.data.cpu())
# measure accuracy and record loss
losses.update(loss.data, inputs.size(0))
acces.update(acc[0], inputs.size(0))
print("({0:d}/{1:d}) Loss: {2:.10f} | Acc: {3: .10f}".format(i + 1, len(val_loader), losses.avg, acces.avg))
return losses.avg, acces.avg
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='PointNet based Rigging Network')
# Model structure
parser.add_argument('--num-classes', default=10, type=int, metavar='N',
help='Number of keypoints')
# Training strategy
parser.add_argument('--workers', '-j', default=1, type=int, metavar='N',
help='number of data loading workers (default: 1)')
parser.add_argument('--epochs', default=50, type=int, metavar='N',
help='number of total epochs to run')
parser.add_argument('--start-epoch', default=0, type=int, metavar='N',
help='manual epoch number (useful on restarts)')
parser.add_argument('--train-batch', default=16, type=int, metavar='N',
help='train batchsize')
parser.add_argument('--test-batch', default=16, type=int, metavar='N',
help='test batchsize')
parser.add_argument('--lr', '--learning-rate', default=1e-5, type=float,
metavar='LR', help='initial learning rate') # 2.5e-4
parser.add_argument('--momentum', default=0, type=float, metavar='M',
help='momentum')
parser.add_argument('--weight-decay', '--wd', default=1e-4, type=float,
metavar='W', help='weight decay (default: 0)')
parser.add_argument('--schedule', type=int, nargs='+', default=[],
help='Decrease learning rate at these epochs.')
parser.add_argument('--gamma', type=float, default=0.1,
help='LR is multiplied by gamma on schedule.')
# Miscs
# parser.add_argument('-c', '--checkpoint', default='checkpoint/pointnet_test', type=str, metavar='PATH',
# help='path to save checkpoint (default: checkpoint)')
# parser.add_argument('--resume', default='', type=str, metavar='PATH',
# help='path to latest checkpoint (default: none)')
parser.add_argument('-c', '--checkpoint', default='checkpoint/pointnet_test', type=str, metavar='PATH',
help='path to save checkpoint (default: checkpoint)')
parser.add_argument('--resume', default='', type=str, metavar='PATH',
help='path to latest checkpoint (default: none)')
parser.add_argument('-e', '--evaluate', dest='evaluate', action='store_true',
help='evaluate model on validation set')
parser.add_argument('-d', '--debug', dest='debug', action='store_true',
help='show intermediate results')
# file path
parser.add_argument('--json_file',
default='/mnt/gypsum/mnt/nfs/work1/kalo/zhanxu/shark_pose_dataset/3d_data/fish_ply_annotations_trainval.json',
type=str, help='json file path')
parser.add_argument('--img_folder',
default='/mnt/gypsum/mnt/nfs/work1/kalo/zhanxu/shark_pose_dataset/3d_data',
type=str, help='img folder')
main(parser.parse_args())